Search results for: silhouette detection
1461 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: string classification, data quality, feature selection, probability distribution, string length
Procedia PDF Downloads 3181460 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis
Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo
Abstract:
Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination
Procedia PDF Downloads 1441459 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1021458 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding
Authors: R. S. Remya, U. S. Sethulekshmi
Abstract:
Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering
Procedia PDF Downloads 3591457 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 1911456 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 691455 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 2901454 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence
Authors: Sungroul Kim, Yeonjin Kim
Abstract:
This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence
Procedia PDF Downloads 2001453 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults
Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane
Abstract:
Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme
Procedia PDF Downloads 1391452 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.
Procedia PDF Downloads 1221451 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 361450 Tax Evasion with Mobility between the Regular and Irregular Sectors
Authors: Xavier Ruiz Del Portal
Abstract:
This paper incorporates mobility between the legal and black economies into a model of tax evasion with endogenous labor supply in which underreporting is possible in one sector but impossible in the other. We have found that the results of the effects along the extensive margin (number of evaders) become more robust and conclusive than those along the intensive margin (hours of illegal work) usually considered by the literature. In particular, it is shown that the following policies reduce the number of evaders: (a) larger and more progressive evasion penalties; (b) higher detection probabilities; (c) an increase in the legal sector wage rate; (d) a decrease in the moonlighting wage rate; (e) higher costs for creating opportunities to evade; (f) lower opportunities to evade, and (g) greater psychological costs of tax evasion. When tax concealment and illegal work also are taken into account, the effects do not vary significantly under the assumptions in Cowell (1985), except for the fact that policies (a) and (b) only hold as regards low- and middle-income groups and policies (e) and (f) as regards high-income groups.Keywords: income taxation, tax evasion, extensive margin responses, the penalty system
Procedia PDF Downloads 1551449 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 3651448 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography
Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang
Abstract:
Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination
Procedia PDF Downloads 2831447 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1411446 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 5131445 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 3561444 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control
Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo
Abstract:
Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.Keywords: leak testing, spacecraft parts, relative error, error control
Procedia PDF Downloads 4561443 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling
Procedia PDF Downloads 3931442 Early Detection of Major Earthquakes Using Broadband Accelerometers
Authors: Umberto Cerasani, Luca Cerasani
Abstract:
Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.Keywords: earthquake, accelerometer, earthquake forecasting, seism
Procedia PDF Downloads 1441441 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 671440 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks
Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid
Abstract:
Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.Keywords: WSN, routing, cluster based, meme, memetic algorithm
Procedia PDF Downloads 4811439 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents
Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi
Abstract:
Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS
Procedia PDF Downloads 2941438 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR
Authors: Taru Singh, Shukla Das, V. G. Ramachandran
Abstract:
Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.Keywords: resistance, b-lactamases, E. coli, real-time PCR
Procedia PDF Downloads 4111437 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network
Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar
Abstract:
Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE
Procedia PDF Downloads 3581436 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1301435 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 1231434 Detection of Arterial Stiffness in Diabetes Using Photoplethysmograph
Authors: Neelamshobha Nirala, R. Periyasamy, Awanish Kumar
Abstract:
Diabetes is a metabolic disorder and with the increase of global prevalence of diabetes, cardiovascular diseases and mortality related to diabetes has also increased. Diabetes causes the increase of arterial stiffness by elusive hormonal and metabolic abnormalities. We used photoplethysmograph (PPG), a simple non-invasive method to study the change in arterial stiffness due to diabetes. Toe PPG signals were taken from 29 diabetic subjects with mean age of (65±8.4) years and 21 non-diabetic subjects of mean age of (49±14) years. Mean duration of diabetes is 12±8 years for diabetic group. Rise-time (RT) and area under rise time (AUR) were calculated from the PPG signal of each subject and Welch’s t-test is used to find the significant difference between two groups. We obtained a significant difference of (p-value) 0.0005 and 0.03 for RT and AUR respectively between diabetic and non-diabetic subjects. Average value of RT and AUR is 0.298±0.003 msec and 14.4±4.2 arbitrary units respectively for diabetic subject compared to 0.277±0.0005 msec and 13.66±2.3 a.u respectively for non-diabetic subjects. In conclusion, this study support that arterial stiffness is increased in diabetes and can be detected early using PPG.Keywords: area under rise-time, AUR, arterial stiffness, diabetes, photoplethysmograph, PPG, rise-time (RT)
Procedia PDF Downloads 2591433 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing
Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya
Abstract:
One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope
Procedia PDF Downloads 2671432 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products
Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia
Abstract:
Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.Keywords: plant-based products, ARG, PCR, antibiotic residues
Procedia PDF Downloads 90