Search results for: sensor node data processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28556

Search results for: sensor node data processing

26546 Prioritizing the Factors Effective on Decreasing the Rate of Accidents on Freeways in Iran between 2013-2015

Authors: Mansour Hadji Hosseinlou, Alireza Mahdavi

Abstract:

Transportation is one of any society's needs which have developed after improving economically and socially and is one of civilization symbols today. Although it is so useful for human, it leads to many serious harms and injuries. The development of communication system and building new roads has resulted in increasing the rate of accidents; therefore, in practice, this increasing rate has decreased the advantages of transportation. Traffic accidents are one of the causes of death, serious financial and bodily harms and its significant social, economic and cultural consequences threatens the societies seriously. Iran's ground transportation system is one of the most eventful transportation systems in the world and mortality rate and financial harms cost too much for the country in national aspect. Therefore, we have presented a data collection by referring to recorded statistics of the accidents occurred in freeways from 2013 to 2015. These statistics are recorded in different related databases, generally police and road transportation system. The data is separated and arranged in tables and after preparing, processing and prioritizing the factors, the achieved collection is presented to the departments, managers and researchers to help them suggest practical solutions.

Keywords: freeways’ accidents, humane causes, death, tiredness, drowsiness

Procedia PDF Downloads 193
26545 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
26544 Religiosity and Social Factors on Alcohol Use among South African University Students

Authors: Godswill Nwabuisi Osuafor, Sonto Maria Maputle

Abstract:

Background: Abounding studies found that religiosity and social factors modulate alcohol use among university students. However, there is a scarcity of empirical studies examining the protective effects of religiosity and other social factors on alcohol use and abuse in South African universities. The aim of this study was therefore to assess the protective effects of religiosity and roles of social factors on alcohol use among university students. Methodology: A survey on the use of alcohol among 416 university students was conducted using structured questionnaire in 2014. Data were sourced on religiosity and contextual variables. Students were classified as practicing intrinsic religiosity or extrinsic religiosity based on the response to the measures of religiosity. Descriptive, chi square and binary logistic analyses were used in processing the data. Result: Results revealed that alcohol use was associated with religiosity, religion, sex, family history of alcohol use and experimenting with alcohol. Reporting alcohol abuse was significantly predicted by sex, family history of alcohol use and experimenting with alcohol. Religiosity mediated lower alcohol use whereas family history of alcohol use and experimenting with alcohol promoted alcohol use and abuse. Conclusion: Families, religious groups and societal factors may be the specific niches for intervention on alcohol use among university students.

Keywords: religiosity, alcohol use, protective factors, university students

Procedia PDF Downloads 397
26543 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 379
26542 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 82
26541 Comparison of Yb and Tm-Fiber Laser Cutting Processes of Fiber Reinforced Plastics

Authors: Oktay Celenk, Ugur Karanfil, Iskender Demir, Samir Lamrini, Jorg Neumann, Arif Demir

Abstract:

Due to its favourable material characteristics, fiber reinforced plastics are amongst the main topics of all actual lightweight construction megatrends. Especially in transportation trends ranging from aeronautics over the automotive industry to naval transportation (yachts, cruise liners) the expected economic and environmental impact is huge. In naval transportation components like yacht bodies, antenna masts, decorative structures like deck lamps, light houses and pool areas represent cheap and robust solutions. Commercially available laser tools like carbon dioxide gas lasers (CO₂), frequency tripled solid state UV lasers, and Neodymium-YAG (Nd:YAG) lasers can be used. These tools have emission wavelengths of 10 µm, 0.355 µm, and 1.064 µm, respectively. The scientific goal is first of all the generation of a parameter matrix for laser processing of each used material for a Tm-fiber laser system (wavelength 2 µm). These parameters are the heat affected zone, process gas pressure, work piece feed velocity, intensity, irradiation time etc. The results are compared with results obtained with well-known material processing lasers, such as a Yb-fiber lasers (wavelength 1 µm). Compared to the CO₂-laser, the Tm-laser offers essential advantages for future laser processes like cutting, welding, ablating for repair and drilling in composite part manufacturing (components of cruise liners, marine pipelines). Some of these are the possibility of beam delivery in a standard fused silica fiber which enables hand guided processing, eye safety which results from the wavelength, excellent beam quality and brilliance due to the fiber nature. There is one more feature that is economically absolutely important for boat, automotive and military projects manufacturing that the wavelength of 2 µm is highly absorbed by the plastic matrix and thus enables selective removal of it for repair procedures.

Keywords: Thulium (Tm) fiber laser, laser processing of fiber-reinforced plastics (FRP), composite, heat affected zone

Procedia PDF Downloads 193
26540 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: image detection, forgery image, copy-paste, attack detection

Procedia PDF Downloads 338
26539 The Effect of the Internal Organization Communications' Effectiveness through Employee's Performance of Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Malaiphan Pansap, Surasit Vithayarat

Abstract:

The purpose of this study was to study the relationship between internal organization communications’ effectiveness and employee’s performance of Faculty of Management Science, Suan Sunandha Rajabhat University. Study on solutions of communication were carried out within the organization. Questionnaire was used to collect information from 136 people of staff and instructor and data were analyzed by using frequency, percentage, mean and standard deviation and then data processing statistic programs. The result found that organization communication that affects their employee’s performance is sender which lack the skills for speaking and writing to convince audiences ready before taking message and the message which organizations are not always informed. The employees believe the behavior of good organization communication has a positive impact on the development of organization because the employees feel involved and be a part of the organization, by the cooperation in working to achieve the goal, the employees can work in the same direction and meet goal quickly.

Keywords: employee’s performance, faculty of management science, internal organization communications’ effectiveness, management accounting, Suan Sunandha Rajabhat University

Procedia PDF Downloads 239
26538 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 248
26537 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
26536 Study of Linear Generator for Vibration Energy Harvesting of Frequency more than 50Hz

Authors: Seong-Jin Cho, Jin Ho Kim

Abstract:

Energy harvesting is the technology which gathers and converts external energies such as light, vibration and heat which are disposed into reusable electrical energy and uses such electrical energy. The vibration energy harvesting is very interesting technology because it produces very high density of energy and unaffected by the climate. Vibration energy can be harvested by the electrostatic, electromagnetic and piezoelectric systems. The electrostatic system has low energy conversion efficiency, and the piezoelectric system is expensive and needs the frequent maintenance because it is made of piezoelectric ceramic. On the other hand, the electromagnetic system has a long life time and high harvesting efficiency, and it is relatively cheap. The electromagnetic harvesting system includes the linear generator and the rotary-type generator. The rotary-type generators require the additional mechanical conversion device if it uses linear motion of vibration. But, the linear generator uses directly linear motion of vibration without a mechanical conversion device, and it has uncomplicated structure and light weight compared with the rotary-type generator. Therefore, the linear electromagnetic generator can be useful in using vibration energy harvesting. The pole transformer systems need electricity sensor system for sending voltage and power information to administrator. Therefore, the battery is essential, and its regular maintenance of replacement is required. In case of the transformer of high location in mountainous areas, the person can’t easily access it resulting in high maintenance cost. To overcome these problems, we designed and developed the linear electromagnetic generator which can replace battery in electricity sensor system for sending voltage and power information of the pole transformer. And, it uses vibration energy of frequency more than 50 Hz by the pole transformer. In order to analyze the electromagnetic characteristics of small linear electric generator, a commercial electromagnetic finite element analysis program "MAXWELL" was used. Then, through the actual production and experiment of linear generator, we confirmed output power of linear generator.

Keywords: energy harvesting, frequency, linear generator, experiment

Procedia PDF Downloads 260
26535 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 151
26534 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
26533 Information Extraction for Short-Answer Question for the University of the Cordilleras

Authors: Thelma Palaoag, Melanie Basa, Jezreel Mark Panilo

Abstract:

Checking short-answer questions and essays, whether it may be paper or electronic in form, is a tiring and tedious task for teachers. Evaluating a student’s output require wide array of domains. Scoring the work is often a critical task. Several attempts in the past few years to create an automated writing assessment software but only have received negative results from teachers and students alike due to unreliability in scoring, does not provide feedback and others. The study aims to create an application that will be able to check short-answer questions which incorporate information extraction. Information extraction is a subfield of Natural Language Processing (NLP) where a chunk of text (technically known as unstructured text) is being broken down to gather necessary bits of data and/or keywords (structured text) to be further analyzed or rather be utilized by query tools. The proposed system shall be able to extract keywords or phrases from the individual’s answers to match it into a corpora of words (as defined by the instructor), which shall be the basis of evaluation of the individual’s answer. The proposed system shall also enable the teacher to provide feedback and re-evaluate the output of the student for some writing elements in which the computer cannot fully evaluate such as creativity and logic. Teachers can formulate, design, and check short answer questions efficiently by defining keywords or phrases as parameters by assigning weights for checking answers. With the proposed system, teacher’s time in checking and evaluating students output shall be lessened, thus, making the teacher more productive and easier.

Keywords: information extraction, short-answer question, natural language processing, application

Procedia PDF Downloads 428
26532 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 388
26531 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks

Authors: Ameen Jameel Alawneh

Abstract:

A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.

Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets

Procedia PDF Downloads 392
26530 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
26529 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
26528 Follicular Thyroid Carcinoma in a Developing Country: A Retrospective Study of 10 Years

Authors: Abdul Aziz, Muhammad Qamar Masood, Saadia Sattar, Saira Fatima, Najmul Islam

Abstract:

Introduction: The most common endocrine tumor is thyroid cancer. Follicular Thyroid Carcinoma (FTC) accounts for 5%–10% of all thyroid cancers. Patients with FTC frequently present with more advanced stage diseases and a higher occurrence of distant metastases because of the propensity of vascular invasion. FTC is mainly treated with surgery, while radioactive iodine therapy is the main adjuvant therapy as per ATA guidelines. In many developing countries, surgical facilities and radioactive iodine are in short supply; therefore, understanding follicular thyroid cancer trends may help developing countries plan and use resources more effectively. Methodology: It was a retrospective observational study of FTC patients of age 18 years and above conducted at Aga Khan University Hospital, Karachi, from 1st January 2010 to 31st December 2019. Results: There were 404 patients with thyroid carcinoma, out of which forty (10.1%) were FTC. 50% of the patients were in the 41-60 years age group, and the female to male ratio was 1.5: 1. Twenty-four patients (60%) presented with complain of neck swelling followed by metastasis (20%) and compressive symptoms (20%). The most common site of metastasis was bone (87.5%), followed by lung (12.5%). The pre-operative thyroglobulin level was done in six out of eight metastatic patients (75%) in which it was elevated. This emphasizes the importance of checking thyroglobulin level in unusual presentation (bone pain, fractures) of a patient having neck swelling also to help in establishing the primary source of tumor. There was no complete documentation of ultrasound features of the thyroid gland in all the patients, which is an important investigation done in the initial evaluation of thyroid nodule. On FNAC, 50% (20 patients) had Bethesda category III-IV nodules, while 10% ( 4 patients ) had Bethesda category II. In sixteen patients, FNAC was not done as they presented with compressive symptoms or metastasis. Fifty percent had a total thyroidectomy and 50% had subtotal followed by completion thyroidectomy, plus ten patients had lymph node dissection, out of which seven had histopathological lymph node involvement. On histopathology, twenty-three patients (57.5%) had minimally invasive, while seventeen (42.5%) had widely invasive follicular thyroid carcinoma. The capsular invasion was present in thirty-three patients (82.5%); one patient had no capsular invasion, but there was a vascular invasion. Six patients' histopathology had no record of capsular invasion. In contrast, the lymphovascular invasion was present in twenty-six patients (65%). In this study, 65 % of the patients had clinical stage 1 disease, while 25% had stage 2 and 10% had clinical stage 4. Seventeen patients (42.5%) had received RAI 30-100 mCi, while ten patients (25%) received more than 100 mCi. Conclusion: FTC demographic and clinicopathological presentation are the same in Pakistan as compared to other countries. Surgery followed by RAI is the mainstay of treatment. Thus understanding the trend of FTC and proper planning and utilization of the resources will help the developing countries in effectively treating the FTC.

Keywords: thyroid carcinoma, follicular thyroid carcinoma, clinicopathological features, developing countries

Procedia PDF Downloads 192
26527 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 516
26526 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 534
26525 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 144
26524 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, artificial neural network, kinect, stereotypical motor movements

Procedia PDF Downloads 306
26523 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback

Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland

Abstract:

In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.

Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation

Procedia PDF Downloads 119
26522 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 132
26521 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments

Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo

Abstract:

Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.

Keywords: data disorders, quality, healthcare, treatment

Procedia PDF Downloads 434
26520 3D Images Representation to Provide Information on the Type of Castella Beams Hole

Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi

Abstract:

Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.

Keywords: digital image, image processing, edge detection, grayscale, castella beams

Procedia PDF Downloads 141
26519 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 348
26518 ICanny: CNN Modulation Recognition Algorithm

Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng

Abstract:

Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.

Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm

Procedia PDF Downloads 191
26517 Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System

Authors: Won Hyuck Kim, Chang Hwan Kim, Hyun Wook Kim, Myoung Hoon Lee, Chan Hong Park, Hyeon Yeong Park

Abstract:

We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey.

Keywords: Anmok, beach survey, Shipborne Mobile LiDAR System, submarine topography

Procedia PDF Downloads 429