Search results for: optimum grounding grid design
12635 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique
Authors: Guettal Djaouida, Ziadi Abdelkader
Abstract:
In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm
Procedia PDF Downloads 50312634 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 15712633 Thermoplastic-Intensive Battery Trays for Optimum Electric Vehicle Battery Pack Performance
Authors: Dinesh Munjurulimana, Anil Tiwari, Tingwen Li, Carlos Pereira, Sreekanth Pannala, John Waters
Abstract:
With the rapid transition to electric vehicles (EVs) across the globe, car manufacturers are in need of integrated and lightweight solutions for the battery packs of these vehicles. An integral part of a battery pack is the battery tray, which constitutes a significant portion of the pack’s overall weight. Based on the functional requirements, cost targets, and packaging space available, a range of materials –from metals, composites, and plastics– are often used to develop these battery trays. This paper considers the design and development of integrated thermoplastic-intensive battery trays, using the available packaging space from a representative EV battery pack. Presented as a proposed alternative are multiple concepts to integrate several connected systems such as cooling plates and underbody impact protection parts of a multi-piece incumbent battery pack. The resulting digital prototype was evaluated for several mechanical performance measures such as mechanical shock, drop, crush resistance, modal analysis, and torsional stiffness. The performance of this alternative design is then compared with the incumbent solution. In addition, insights are gleaned into how these novel approaches can be optimized to meet or exceed the performance of incumbent designs. Preliminary manufacturing feasibility of the optimal solution using injection molding and other commonly used manufacturing methods for thermoplastics is briefly explained. Then numerical and analytical evaluations are performed to show a representative Pareto front of cost vs. volume of the production parts. The proposed solution is observed to offer weight savings of up to 40% on a component level and part elimination of up to two systems in the battery pack of a typical battery EV while offering the potential to meet the required performance measures highlighted above. These conceptual solutions are also observed to potentially offer secondary benefits such as improved thermal and electrical isolations and be able to achieve complex geometrical features, thus demonstrating the ability to use the complete packaging space available in the vehicle platform considered. The detailed study presented in this paper serves as a valuable reference for researches across the globe working on the development of EV battery packs – especially those with an interest in the potential of employing alternate solutions as part of a mixed-material system to help capture untapped opportunities to optimize performance and meet critical application requirements.Keywords: thermoplastics, lightweighting, part integration, electric vehicle battery packs
Procedia PDF Downloads 20512632 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test
Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan
Abstract:
Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.Keywords: vacuum vessel, large opening, space environment simulator, structure design
Procedia PDF Downloads 53512631 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations
Authors: Rima A. Ajlouni
Abstract:
The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi
Procedia PDF Downloads 40212630 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic
Authors: May M. Youssef
Abstract:
This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing
Procedia PDF Downloads 20112629 Design of Rigid L-Shaped Retaining Walls
Authors: Ahmed Rouili
Abstract:
Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0,5 to 0,7, ensure the stability requirements in most cases. However, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work, the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.Keywords: cantilever wall, proportioning, numerical analysis, lateral pressure estimation
Procedia PDF Downloads 32312628 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys
Authors: Dong Bok Lee, Min Jung Kim
Abstract:
The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment
Procedia PDF Downloads 31712627 HEXAFLY-INT Project: Design of a High Speed Flight Experiment
Authors: S. Di Benedetto, M. P. Di Donato, A. Rispoli, S. Cardone, J. Riehmer, J. Steelant, L. Vecchione
Abstract:
Thanks to a coordinated funding by the European Space Agency (ESA) and the European Commission (EC) within the 7th framework program, the High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) project is aimed at the flight validation of hypersonics technologies enabling future trans-atmospheric flights. The project, which is currently involving partners from Europe, Russian Federation and Australia operating under ESA/ESTEC coordination, will achieve the goal of designing, manufacturing, assembling and flight testing an unpowered high speed vehicle in a glider configuration by 2018. The main technical challenges of the project are specifically related to the design of the vehicle gliding configuration and to the complexity of integrating breakthrough technologies with standard aeronautical technologies, e.g. high temperature protection system and airframe cold structures. Also, the sonic boom impact, which is one of the environmental challenges of the high speed flight, will be assessed. This paper provides a comprehensive and detailed update on all the current projects activities carried out to date on both the vehicle and mission design.Keywords: design, flight testing, HEXAFLY-INT, hypersonics
Procedia PDF Downloads 46812626 Applying Kinect on the Development of a Customized 3D Mannequin
Authors: Shih-Wen Hsiao, Rong-Qi Chen
Abstract:
In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision
Procedia PDF Downloads 30612625 A Study on the Optimal Placement and Control Scheme for Multi Terminal HVDC in Korea
Authors: Chur Hee Lee, Ju Sik Kwak, Seung Wan Kim
Abstract:
This paper deals about economics and control of optimal placement of multi-terminal HVDC in Korea. Currently, No.1 and 2 HVDC are installed in Jeju and Mainland, Dangjin Godeok HVDC starts operation in 2020. Jeju No.3 HVDC also starts operation in 2022. HVDC systems in Korea are expanding. Also, super grid projects with China, Japan, and Russia are under consideration. In this situation, it is necessary to study how to install optimal HVDC in Korea and how to control it. After initializing the Optical Polwer Flow (OPF) procudure using lossless economic dispatch, grobal iteration will be set. And then, this will be formed as the Lagrangian function and linearizied. We will also analyze the advantages and disadvantages of each operation mode for optimal operating conditions of voltage and current complex HVDC in Korea.Keywords: economics, HVDC, multi terminal, optimal
Procedia PDF Downloads 21212624 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 19812623 Lean: A Sustainable Approach to Design and Construction for Environmental Sustainability
Authors: Evelyn Lami Ashelo Allu, Fidelis A. Emuze
Abstract:
This study aims to contribute to the pursuit of environmental sustainability through the built environment practices of design and construction. Activities within the built environment and particularly within the construction industry have a significant role in ensuring environmental sustainability. The adoption of Lean principles and approaches would ensure that project deliverables are sustainable. This is because the processes that integrate lean principles reduce waste, add value to productivity, ensures customer satisfaction and are mindful of future productivity. Additionally, the lean principles for development are sustainable in themselves and thus promotes environmental sustainability. The study encourages further research with other methodologies and recommends the development of monitoring and evaluation mechanisms in order to promote the global concern for environmental sustainability.Keywords: built environment, construction, design, lean, sustainability
Procedia PDF Downloads 26512622 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles
Authors: Philip Speranza
Abstract:
As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.Keywords: transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology
Procedia PDF Downloads 24712621 Attribute Selection for Preference Functions in Engineering Design
Authors: Ali E. Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 30612620 Design of Reconfigurable Fixed-Point LMS Adaptive FIR Filter
Authors: S. Padmapriya, V. Lakshmi Prabha
Abstract:
In this paper, an efficient reconfigurable fixed-point Least Mean Square Adaptive FIR filter is proposed. The proposed architecture has two methods of operation: one is area efficient design and the other is optimized power. Pipelining of the adder blocks and partial product generator are used to achieve low area and reversible logic is used to obtain low power design. Depending upon the input samples and filter coefficients, one of the techniques is chosen. Least-Mean-Square adaptation is performed to update the weights. The architecture is coded using Verilog and synthesized in cadence encounter 0.18μm technology. The synthesized results show that the area reduction ratio of the proposed when compared with conventional technique is about 1.2%.Keywords: adaptive filter, carry select adder, least mean square algorithm, reversible logic
Procedia PDF Downloads 33012619 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 53712618 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 16712617 Design of an Automatic Saw Cutting Machine for Wood and Aluminum
Authors: Jawad Ul Haq, Evan Mazur, Ahmed Qureshi, Mohamed Al-Hussein
Abstract:
The uses of wood in furniture, building, bridges and aluminum in transportation and construction, make aluminum and forest economy a prominent matter in North America. Machines available to date to cut the aforementioned materials are mostly industry oriented with complex structure and operations which require special training and skill. Furthermore, requirements such as pneumatics, 3-phase supply are associated with cost, maintenance, and safety hazards. Power saws are very useful tools used to cut and shape materials; however, they can cause serious hand injuries. Operator’s hands in table saw are vulnerable as they are used to guide pieces into the saw. Apart from hands, saw operator is also prone to material being kicked back out of the saw or sustain eye or respiratory injuries due to rapidly flying sawdust and other debris. In this paper, design of an automatic saw cutting machine has been proposed to ensure safety, portability, usage at domestic level and capability to cut both aluminum and wood. This paper demonstrates detailed Mechanical design in SOLIDWORKS and Control Systems using Programmable Logic Controller (PLC), based on the aforementioned design objectives.Keywords: programmable logic controller, saw cutting, control, automation
Procedia PDF Downloads 27312616 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 37812615 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model
Authors: Xiaobao Han, Huacong Li, Jia Li
Abstract:
For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator
Procedia PDF Downloads 39912614 Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small.Keywords: waste tire pyrolysis char, chemical activation, central composite design (CCD), adsorption capacity, numerical optimization
Procedia PDF Downloads 22612613 The Wine List Design by Upscale Restaurants
Authors: A. Oliveira-Brochado, R. Vinhas da Silva
Abstract:
This paper investigates the structure and content of the wine lists in upscale restaurants in Portugal (N=61). The respondents considered that a wine list should be easy to use and to modify, well-designed, modern and varied. Respondents also stated that they perform on average 6 revisions to the wine list per year. The restaurant owner, the restaurant manager and the sommelier were the main persons in charge of the wine list design. One of the mostimportant reasons for selecting wines across most restaurants was to ‘complement the menu’ and ‘pairing food with wine’. Restaurants also reported to be relatively independent from suppliers and magazine evaluations. Moreover, this work revealed that the restaurant wine list is considered by restaurateurs as a strategic tool to sell wine as a complement to the menu, to improve customer satisfaction and loyalty, to increase restaurant value and to enhance a successful positioning.Keywords: Portugal, restaurants, wine list design, hospitality
Procedia PDF Downloads 44512612 Integration of Polarization States and Color Multiplexing through a Singular Metasurface
Authors: Tarik Sipahi
Abstract:
Photonics research continues to push the boundaries of optical science, and the development of metasurface technology has emerged as a transformative force in this domain. The work presents the intricacies of a unified metasurface design tailored for efficient polarization and color control in optical systems. The proposed unified metasurface serves as a singular, nanoengineered optical element capable of simultaneous polarization modulation and color encoding. Leveraging principles from metamaterials and nanophotonics, this design allows for unprecedented control over the behavior of light at the subwavelength scale. The metasurface's spatially varying architecture enables seamless manipulation of both polarization states and color wavelengths, paving the way for a paradigm shift in optical system design. The advantages of this unified metasurface are diverse and impactful. By consolidating functions that traditionally require multiple optical components, the design streamlines optical systems, reducing complexity and enhancing overall efficiency. This approach is particularly promising for applications where compactness, weight considerations, and multifunctionality are crucial. Furthermore, the proposed unified metasurface design not only enhances multifunctionality but also addresses key challenges in optical system design, offering a versatile solution for applications demanding compactness and lightweight structures. The metasurface's capability to simultaneously manipulate polarization and color opens new possibilities in diverse technological fields. The research contributes to the evolution of optical science by showcasing the transformative potential of metasurface technology, emphasizing its role in reshaping the landscape of optical system architectures. This work represents a significant step forward in the ongoing pursuit of pushing the boundaries of photonics, providing a foundation for future innovations in compact and efficient optical devices.Keywords: metasurface, nanophotonics, optical system design, polarization control
Procedia PDF Downloads 5312611 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software
Procedia PDF Downloads 45012610 Proniosomes as a Carrier for Ocular Drug Delivery
Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy
Abstract:
Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes
Procedia PDF Downloads 22812609 Paradigm Shift in Reducing Greenhouse Gas Emissions for Developing Countries: Focus on Behavioral Changes
Authors: Bishal Saha, Musah Ahmed Rufai Muhyedeen, Jubeyer Hossain Joy, Muhammad Muhitur Rahman, Mohammad Shahedur Rahman, Md Arif Hasan, Syed Masiur Rahman
Abstract:
Greenhouse gas (GHG) emission is one of the critical problems of today’s world. Many countries have been taking many short- and long-term plans to reduce climate change mitigation. However, the potential of behavioral changes in addressing this problem is promising, as reported by many researchers. This paper presents a comprehensive literature review that focuses on ways to influence people’s behavior in their homes, workplace, and transportation to mitigate the emission directly or indirectly. This study will investigate different theories pertinent to planned behavior and the key elements for modifying behavior like biophilia, reinforcement to use optimum energy and recyclable products, proper application of greenhouse tax, modern technology, and sustainable design adaptation, transportation sharing, social and community norms, proper education and information, and financial incentives. There is a number of challenges associated with behavioral changes. Behavioral interventions have different actions varied by their type and need to combine various policy tools and great social marketing. Many interventions can reduce GHG emissions without any compromise with household well-being. This study will develop a landscape of prevailing theories of environmental psychology by identifying and reviewing the key themes and findings of this field of study. It will support especially the developing countries to reduce GHG emissions without significant capital investment. It is also expected that the behavioral changes will lead to the successful adoption of climate-friendly policies easily. This study will also generate new research questions and directions.Keywords: behavioral changes, climate change mitigation, environmental psychology, greenhouse gas emission
Procedia PDF Downloads 23512608 Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA
Authors: Paul Okonkwo, Howard Smith
Abstract:
This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.Keywords: aerodynamics, automation, optimisation, AVL, JNI
Procedia PDF Downloads 58212607 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies
Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel
Abstract:
This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.Keywords: sustainable design, energy modeling, design validation, degree-days methods
Procedia PDF Downloads 42012606 Design Criteria for Achieving Acceptable Indoor Radon Concentration
Authors: T. Valdbjørn Rasmussen
Abstract:
Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.Keywords: radon, natural radiation, barrier, pressure lowering, ventilation
Procedia PDF Downloads 354