Search results for: nurse image
1075 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces
Authors: Hervé Zénouda
Abstract:
This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music
Procedia PDF Downloads 1121074 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques
Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari
Abstract:
Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel
Procedia PDF Downloads 3371073 Shaabi in the City: On Modernizing Sounds and Exclusion in Egyptian Cities
Authors: Mariam Aref Mahmoud
Abstract:
After centuries of historical development, Egypt is no stranger to national identity frustrations. What may or may not be counted as this “national identity” becomes a source of contention. Today, after decades of neoliberal reform, Cairo has become the center of Egypt’s cultural debacle. At its heart, the Egyptian capital serves as Egypt’s extension into global capitalism, its flailing hope to become part of the modernized, cosmopolitan world. Yet, to converge into this image of cosmopolitanism, Cairo must silence the perceived un-modernized sounds, cultures, and spaces that arise from within its alleyways. Currently, the agitation surrounding shaabi music, particularly, that of mahraganat, places these contentions to the center of the modernization debates. This paper will discuss the process through which the conversations between modernization, space, and culture have taken place through a historical analysis of national identity formation under Egypt’s neoliberal regimes. Through this, the paper concludes that music becomes a spatial force through which public space, identity, and globalization must be contested. From these findings researchers can then analyze Cairo through not only its physical landscapes, but also its metaphysical features – such as the soundscape.Keywords: music, space, globalization, Cairo
Procedia PDF Downloads 1111072 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 751071 Kidney Supportive Care in Canada: A Constructivist Grounded Theory of Dialysis Nurses’ Practice Engagement
Authors: Jovina Concepcion Bachynski, Lenora Duhn, Idevania G. Costa, Pilar Camargo-Plazas
Abstract:
Kidney failure is a life-limiting condition for which treatment, such as dialysis (hemodialysis and peritoneal dialysis), can exact a tremendously high physical and psychosocial symptom burden. Kidney failure can be severe enough to require a palliative approach to care. The term supportive care can be used in lieu of palliative care to avoid the misunderstanding that palliative care is synonymous with end-of-life or hospice care. Kidney supportive care, encompassing advance care planning, is an approach to care that improves the quality of life for people receiving dialysis through early identification and treatment of symptoms throughout the disease trajectory. Advanced care planning involves ongoing conversations about the values, goals, and preferences for future care between individuals and their healthcare teams. Kidney supportive care is underutilized and often initiated late in this population. There is evidence to indicate nurses are not providing the necessary elements of supportive kidney care. Dialysis nurses’ delay or lack of engagement in supportive care until close to the end of life may result in people dying without receiving optimal palliative care services. Using Charmaz’s constructivist grounded theory, the purpose of this doctoral study is to develop a substantive theory that explains the process of engagement in supportive care by nurses working in dialysis settings in Canada. Through initial purposeful and subsequent theoretical sampling, 23 nurses with current or recent work experience in outpatient hemodialysis, home hemodialysis, and peritoneal dialysis settings drawn from across Canada were recruited to participate in two intensive interviews using the Zoom© teleconferencing platform. Concurrent data collection and data analysis, constant comparative analysis of initial and focused codes until the attainment of theoretical saturation, and memo-writing, as well as researcher reflexivity, have been undertaken to aid the emergence of concepts, categories, and, ultimately, the constructed theory. At the time of abstract submission, data analysis is currently at the second level of coding (i.e., focused coding stage) of the research study. Preliminary categories include: (a) focusing on biomedical care; (b) multi-dimensional challenges to having the conversation; (c) connecting and setting boundaries with patients; (d) difficulty articulating kidney-supportive care; and (e) unwittingly practising kidney-supportive care. For the conference, the resulting theory will be presented. Nurses working in dialysis are well-positioned to ensure the delivery of quality kidney-supportive care. This study will help to determine the process and the factors enabling and impeding nurse engagement in supportive care in dialysis to effect change for normalizing advance care planning conversations in the clinical setting. This improved practice will have substantive beneficial implications for the many individuals living with kidney failure and their supporting loved ones.Keywords: dialysis, kidney failure, nursing, supportive care
Procedia PDF Downloads 1021070 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers
Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez
Abstract:
An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization
Procedia PDF Downloads 1621069 Distangling Biological Noise in Cellular Images with a Focus on Explainability
Authors: Manik Sharma, Ganapathy Krishnamurthi
Abstract:
The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.Keywords: cellular images, genetic perturbations, deep-learning, explainability
Procedia PDF Downloads 1121068 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 2751067 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images
Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel
Abstract:
Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization
Procedia PDF Downloads 391066 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4621065 Effects of Upstream Wall Roughness on Separated Turbulent Flow over a Forward Facing Step in an Open Channel
Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie
Abstract:
The effect of upstream surface roughness over a smooth forward facing step in an open channel was investigated using a particle image velocimetry technique. Three different upstream surface topographies consisting of hydraulically smooth wall, sandpaper 36 grit and sand grains were examined. Besides the wall roughness conditions, all other upstream flow characteristics were kept constant. It was also observed that upstream roughness decreased the approach velocity by 2% and 10% but increased the turbulence intensity by 14% and 35% at the wall-normal distance corresponding to the top plane of the step compared to smooth upstream. The results showed that roughness decreased the reattachment lengths by 14% and 30% compared to smooth upstream. Although the magnitudes of maximum positive and negative Reynolds shear stress in separated and reattached region were 0.02Ue for all the cases, the physical size of both the maximum and minimum contour levels were decreased by increasing upstream roughness.Keywords: forward facing step, open channel, separated and reattached turbulent flows, wall roughness
Procedia PDF Downloads 3551064 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1551063 Consumers’ Attitude towards Marketing Recreational Marijuana
Authors: Nizar Souiden, Riadh Ladhari
Abstract:
Like tobacco and alcohol, recreational marijuana falls under the umbrella of ‘sin’ industries’. Notwithstanding this general negative image surrounding marijuana use, some scholars argue that most of the widely believed claims made about recreational marijuana users are irrelevant and that marijuana use can even improve individuals’ decision-making. This study intends to shed light on this particular product category (i.e., marijuana) often overlooked or portrayed as taboo from a business view. More specifically, it investigates whether legalizing the consumption of recreational marijuana would be perceived as ethical and whether companies/organizations involved in the commercialization of this particular product would be held socially responsible. Based on primary data collected in Canada, this study aims to answer the following questions: 1) What moral thoughts do individuals hold with regard to the consumption of recreational marijuana? 2) How do these moral thoughts determine consumers’ attitude toward the consumption of recreational marijuana? Regardless of the legalization of recreational marijuana in some countries such as Canada, probing people’s opinions, and investigating their attitudes toward the consumption of recreational marijuana is of important interest to different stakeholders such as consumers, public organizations, private businesses, and trade associations.Keywords: recreational marijuana, moral thoughts, ethics, attitude
Procedia PDF Downloads 1461062 Efficient Motion Estimation by Fast Three Step Search Algorithm
Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar
Abstract:
The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.Keywords: block matching, exhaustive search motion estimation, three step search, video compression
Procedia PDF Downloads 4911061 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3421060 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 2601059 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 961058 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 3521057 The Beauty of Islamic Etiquette: How an Elegant Muslim Woman Represents Her Culture in a Multicultural Society
Authors: Julia A. Ermakova
Abstract:
As a member of a multicultural society, it is imperative that individuals demonstrate the highest level of decorum in order to exemplify the beauty of their culture. Adab, the practice of praiseworthy words and deeds, as well as possessing good manners and pursuing that which is considered good, is a fundamental concept that guards against all types of mistakes. In Islam, etiquette for every situation in life is taught, and it constitutes the way of life for a Muslim. In light of this, the personality of an elegant Muslim woman can be described as one who embodies the following qualities: Firstly, cultural speech and erudition are essential components. Improving one's intellect, learning new things, reading diverse literature, expanding one's vocabulary, working on articulation, and avoiding obscene speech and verbosity are crucial. Additionally, listening more than speaking and being willing to discuss one's culture when asked are commendable qualities. Conversely, it is important to avoid discussing foolish matters with foolish people and to be able to respond appropriately and change the subject if someone attempts to hurt or manipulate. Secondly, the style of speech is also of paramount importance. It is recommended to speak in a measured tone with a quiet voice and deep breathing. Avoiding rushing and shortness of breath is also recommended. Thirdly, awareness of how to greet others is essential. Combining Shariah and small talk etiquette, such as making a gesture of respect by putting one's hand to the chest and smiling slightly when a man offers a handshake, is recommended. Understanding the rules of small talk, taboo topics, and self-presentation is also important. Fourthly, knowing how to give and receive compliments without devaluing them is imperative. Knowledge of the rules of good manners and etiquette, both secular and Shariah, is also essential. Fifthly, avoiding arguments and responding elegantly to rudeness and tactlessness is a sign of an elegant Muslim woman. Treating everyone with respect and avoiding prejudices, taboo topics, inappropriate questions, and bad habits are all aspects of politeness. Sixthly, a neat appearance appropriate to Shariah and the local community, as well as a well-put-together outfit with a touch of elegance and style, are crucial. Posture, graceful movement, and a pleasant gaze are also important. Finally, good spirits and inner calm are key to projecting a harmonious image, which encourages people to listen attentively. Giving thanks to Allah in every situation in life is the key to maintaining good spirits. In conclusion, an elegant Muslim woman in a multicultural society is characterized by her high moral qualities and adherence to Islamic etiquette. These qualities, such as cultural speech and erudition, style of speech, awareness of how to greet, knowledge of good manners and etiquette, avoiding arguments, politeness, a neat appearance, and good spirits, all contribute to projecting an image of elegance and respectability. By exemplifying these qualities, Muslim women can serve as positive ambassadors for their culture and religion in diverse societies.Keywords: adab, elegance, muslim woman, multicultural societies, good manners, etiquette
Procedia PDF Downloads 691056 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System
Authors: Mobarok Hossain Bhuyain
Abstract:
Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.Keywords: human detection, target tracking, neural network, particle filter
Procedia PDF Downloads 1661055 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT
Procedia PDF Downloads 1491054 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 3991053 Texture Identification Using Vision System: A Method to Predict Functionality of a Component
Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran
Abstract:
Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.Keywords: diamond stylus, manufacturing process, texture identification, vision system
Procedia PDF Downloads 2891052 Disordered Eating Behaviors Among Sorority Women
Authors: Andrea J. Kirk-Jenkins
Abstract:
Women in late adolescence and young adulthood are particularly vulnerable to disordered eating, and prior research indicates that those within the college and sorority communities may be especially susceptible. Research has primarily involved comparing eating disorder symptoms between sorority women and non-sorority members using formal eating disorder assessments. This phenomenological study examined sorority members’ (N = 10) perceptions of and lived experiences with various disordered eating behaviors within the sorority culture. Data from individual interviews and photographs indicated two structural themes and 11 textural themes related to factors associated with disordered eating behaviors. These findings point to the existence of both positive and negative aspects of sorority culture, normalization of disordered eating behaviors, and pressure to attain or maintain an ideal body image. Implications for university stakeholders, including college counselors, health center staff, and extracurricular program leaders, are discussed. Further research on the identified textural themes as well as a longitudinal study exploring how perceptions change from rush to alumnae status is suggested.Keywords: eating disorders, disorder eating behaviors, sorority women, sorority culture, college women
Procedia PDF Downloads 1201051 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 1361050 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation
Authors: Richard, Iyan Subiyanto, Chairul Hudaya
Abstract:
Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.Keywords: activated carbon, energy storage material, green coke, specific surface area
Procedia PDF Downloads 1671049 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2961048 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows
Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld
Abstract:
Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV
Procedia PDF Downloads 861047 Exploring Relationship between Attention and Consciousness
Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh
Abstract:
The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.Keywords: attention, awareness, dual task paradigm, natural and geometric images
Procedia PDF Downloads 5181046 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 72