Search results for: linear predictive coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4798

Search results for: linear predictive coding

2788 Availability of TB Infection Control Plans at Rural Hospitals of South Africa

Authors: Takalani Tshitangano

Abstract:

Background: In Limpopo province the rate of new tuberculosis (TB) cases increase daily. The Infection Control (IC) plan is one of the essential actions for TB IC. This study aimed to establish the availability of these plans at health care facilities. Objectives: The objectives were to explore and describe the awareness and knowledge of health care workers (HCWs) of the availability and content of TB IC plan; and to identity the role of infection control committees from the perspective of HCWs. Method: A qualitative approach using a cross-sectional descriptive design was adopted. The target population was all HCWs from the seven hospitals of Vhembe district. A purposive sampling approach was used to select 57 participants. The approval to conduct this study was obtained from the relevant authorities and participants. Data were collected through seven focus group discussions comprising five to 10 members. An unstructured discussion guide was used to collect data, and an open-coding method was used to analyse the data. Lincoln and Guba’s criteria ensured trustworthiness of the study findings. Results: Findings revealed that HCWs were not aware of the availability and the information contained in the TB IC plans. No person was designated as TB IC officer at hospital level. There was lack of a TB IC Committee and teams as well as ineffective utilisation of those that did exist. Conclusions: It was concluded that if the TB IC plans are not available at health care facilities, then the TB IC practices implemented by HCWs vary, resulting in TB nosocomial infection transmission. It was recommended that the World Health Organisation’s TB IC plans be adopted and implemented in Vhembe district.

Keywords: health care workers' awareness, health care workers' knowledge, availability of TB infection control plans, rural hospitals

Procedia PDF Downloads 220
2787 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi

Abstract:

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

Keywords: tPA, recombinant, transgenic, tobacco

Procedia PDF Downloads 145
2786 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 390
2785 The Intersection of Artificial Intelligence and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.

Keywords: AI, mathematics, machine learning, optimization techniques, image processing

Procedia PDF Downloads 16
2784 Genomic Surveillance of Bacillus Anthracis in South Africa Revealed a Unique Genetic Cluster of B- Clade Strains

Authors: Kgaugelo Lekota, Ayesha Hassim, Henriette Van Heerden

Abstract:

Bacillus anthracis is the causative agent of anthrax that is composed of three genetic groups, namely A, B, and C. Clade-A is distributed world-wide, while sub-clades B has been identified in Kruger National Park (KNP), South Africa. KNP is one of the endemic anthrax regions in South Africa with distinctive genetic diversity. Genomic surveillance of KNP B. anthracis strains was employed on the historical culture collection isolates (n=67) dated from the 1990’s to 2015 using a whole genome sequencing approach. Whole genome single nucleotide polymorphism (SNPs) and pan-genomics analysis were used to define the B. anthracis genetic population structure. This study showed that KNP has heterologous B. anthracis strains grouping in the A-clade with more prominent ABr.005/006 (Ancient A) SNP lineage. The 2012 and 2015 anthrax isolates are dispersed amongst minor sub-clades that prevail in non-stabilized genetic evolution strains. This was augmented with non-parsimony informative SNPs of the B. anthracis strains across minor sub-clades of the Ancient A clade. Pan-genomics of B. anthracis showed a clear distinction between A and B-clade genomes with 11 374 predicted clusters of protein coding genes. Unique accessory genes of B-clade genomes that included biosynthetic cell wall genes and multidrug resistant of Fosfomycin. South Africa consists of diverse B. anthracis strains with unique defined SNPs. The sequenced B. anthracis strains in this study will serve as a means to further trace the dissemination of B. anthracis outbreaks globally and especially in South Africa.

Keywords: bacillus anthracis, whole genome single nucleotide polymorphisms, pangenomics, kruger national park

Procedia PDF Downloads 150
2783 Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes

Authors: Jamel Slaughter

Abstract:

Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade.

Keywords: cognitive development, early continuous father involvement, middle childhood, rule-breaking behavior

Procedia PDF Downloads 302
2782 Investigating the Indoor Air Quality of the Respiratory Care Wards

Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen

Abstract:

Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.

Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol

Procedia PDF Downloads 107
2781 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications

Authors: A. E. Kobryn

Abstract:

We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.

Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution

Procedia PDF Downloads 155
2780 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 163
2779 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
2778 Role of Vitamin D in Osseointegration of Dental Implant

Authors: Pouya Khaleghi

Abstract:

Dental implants are a successful treatment modality for restoring both function and aesthetics. Dental implant treatment has predictive results in the replacement of the lost teeth and has a high success rate even in the long term. The most important factor which is responsible for the positive course of implant treatment is the process of osseointegration between the implant structure and the host’s bone tissue. During recent years, many studies have focused on surgical and prosthetic factors, as well as the implant-related factors. However, implant failure still occurs despite the improvements that have led to the increased survival rate of dental implants, which suggests the possible role of some host-related risk factors. Vitamin D is a fat-soluble vitamin regulating calcium and phosphorus metabolism in tissues. The role of vitamin D in bone healing has been under investigation for several years. Vitamin D deficiency has also been associated with impaired and delayed callus formation and fractures healing; however, the role of vitamin D has not been clarified. Therefore, it is extremely important to study the phenomenon of a connection formed between bone tissue and the surface of a titanium implant and find correlations between the 25- hydroxycholecalciferol concentration in blood serum and the course of osseointegration. Because the processes of bone remodeling are very dynamic in the period of actual osseointegration, it is necessary to obtain the correct concentration of vitamin D3 metabolites in blood serum. In conclusion, the correct level of 25-hydroxycholecalciferol on the day of surgery and vitamin D deficiency treatment have a significant influence on the increase in the bone level at the implant site during the process of osseointegration assessed radiologically.

Keywords: implant, osseointegration, vitamin d, dental

Procedia PDF Downloads 174
2777 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: Osamu Takakuwa, Yuta Mano, Hitoshi Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: hydrogen embrittlement, residual stress, surface finishing, stainless steel

Procedia PDF Downloads 381
2776 The Effects of Wealth on Eco-Centric and Anthropocentric Environmentalism: A Statistical Approach Using the World Values Survey

Authors: Rubi Alvarez-Rodriguez

Abstract:

Traditionally, eco-centric and anthropocentric forms of environmentalism have been seen as mutually exclusive. While eco-centrism focuses on global environmental issues, anthropocentrism is concerned with local ones. The objective of this paper is to characterize the relationship between eco-centric and anthropocentric attitudes across 43 countries. This study analysed secondary data from the 2005 World Values Survey, using a standard linear regression approach. It is shown that eco-centric and anthropocentric attitudes are not mutually exclusive and that the predominance of one over the other is best predicted by a country’s level of wealth.

Keywords: anthropocentrism, eco-centrism, pro-environmental attitudes, wealth

Procedia PDF Downloads 360
2775 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions

Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh

Abstract:

This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.

Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor

Procedia PDF Downloads 638
2774 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 71
2773 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions

Authors: Ahmed Khalil

Abstract:

Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.

Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy

Procedia PDF Downloads 136
2772 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning

Authors: S. A. N. Danushka, T. A. Weerasinghe

Abstract:

The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.

Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model

Procedia PDF Downloads 197
2771 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid

Authors: Sameena Tarannum, S. Pranesh

Abstract:

The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.

Keywords: gravity modulation, Oldroyd-b liquid, triple diffusive convection, venezian approach

Procedia PDF Downloads 176
2770 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna

Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,

Abstract:

The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.

Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift

Procedia PDF Downloads 307
2769 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 31
2768 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam

Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares

Abstract:

Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.

Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy

Procedia PDF Downloads 263
2767 Survival Data with Incomplete Missing Categorical Covariates

Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar

Abstract:

The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.

Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution

Procedia PDF Downloads 406
2766 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function

Authors: S. B. Provost, Hossein Zareamoghaddam

Abstract:

A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.

Keywords: density estimation, log-density, moments, Pearson's curve system

Procedia PDF Downloads 281
2765 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras

Abstract:

Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.

Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality

Procedia PDF Downloads 313
2764 Evaluating and Reducing Aircraft Technical Delays and Cancellations Impact on Reliability Operational: Case Study of Airline Operator

Authors: Adel A. Ghobbar, Ahmad Bakkar

Abstract:

Although special care is given to maintenance, aircraft systems fail, and these failures cause delays and cancellations. The occurrence of Delays and Cancellations affects operators and manufacturers negatively. To reduce technical delays and cancellations, one should be able to determine the important systems causing them. The goal of this research is to find a method to define the most expensive delays and cancellations systems for Airline operators. A predictive model was introduced to forecast the failure and their impact after carrying out research that identifies relevant information to tackle the problems faced while answering the questions of this paper. Data were obtained from the manufacturers’ services reliability team database. Subsequently, delays and cancellations evaluation methods were identified. No cost estimation methods were used due to their complexity. The model was developed, and it takes into account the frequency of delays and cancellations and uses weighting factors to give an indication of the severity of their duration. The weighting factors are based on customer experience. The data Analysis approach has shown that delays and cancellations events are not seasonal and do not follow any specific trends. The use of weighting factor does have an influence on the shortlist over short periods (Monthly) but not the analyzed period of three years. Landing gear and the navigation system are among the top 3 factors causing delays and cancellations for all three aircraft types. The results did confirm that the cooperation between certain operators and manufacture reduce the impact of delays and cancellations.

Keywords: reliability, availability, delays & cancellations, aircraft maintenance

Procedia PDF Downloads 132
2763 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 290
2762 Generalized Central Paths for Convex Programming

Authors: Li-Zhi Liao

Abstract:

The central path has played the key role in the interior point method. However, the convergence of the central path may not be true even in some convex programming problems with linear constraints. In this paper, the generalized central paths are introduced for convex programming. One advantage of the generalized central paths is that the paths will always converge to some optimal solutions of the convex programming problem for any initial interior point. Some additional theoretical properties for the generalized central paths will be also reported.

Keywords: central path, convex programming, generalized central path, interior point method

Procedia PDF Downloads 327
2761 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 67
2760 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA

Procedia PDF Downloads 134
2759 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 413