Search results for: experiential learning theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11369

Search results for: experiential learning theory

9359 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 618
9358 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 243
9357 Increasing Creativity in Virtual Learning Space for Developing Creative Cities

Authors: Elham Fariborzi, Hoda Anvari Kazemabad

Abstract:

Today, ICT plays an important role in all matters and it affects the development of creative cities. According to virtual space in this technology, it use especially for expand terms like smart schools, Virtual University, web-based training and virtual classrooms that is in parallel with the traditional teaching. Nowadays, the educational systems in different countries such as Iran are changing and start increasing creativity in the learning environment. It will contribute to the development of innovative ideas and thinking of the people in this environment; such opportunities might be cause scientific discovery and development issues. The creativity means the ability to generate ideas and numerous, new and suitable solutions for solving the problems of real and virtual individuals and society, which can play a significant role in the development of creative current physical cities or virtual borders ones in the future. The purpose of this paper is to study strategies to increase creativity in a virtual learning to develop a creative city. In this paper, citation/ library study was used. The full description given in the text, including how to create and enhance learning creativity in a virtual classroom by reflecting on performance and progress; attention to self-directed learning guidelines, efficient use of social networks, systematic discussion groups and non-intuitive targeted controls them by involved factors and it may be effective in the teaching process regarding to creativity. Meanwhile, creating a virtual classroom the style of class recognizes formally the creativity. Also the use of a common model of creative thinking between student/teacher is effective to solve problems of virtual classroom. It is recommended to virtual education’ authorities in Iran to have a special review to the virtual curriculum for increasing creativity in educational content and such classes to be witnesses more creative in Iran's cities.

Keywords: virtual learning, creativity, e-learning, bioinformatics, biomedicine

Procedia PDF Downloads 362
9356 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 136
9355 The Understanding-Without-Reflection in Psychoanalytic Supervision

Authors: Hanoch Yerushalmi

Abstract:

One of the transformational therapeutic experiences is the therapeutic dyad's immersion in and recovery from shared regressive states that are often provoked by an awakened childhood fear of breakdown. the suggest that the supervisory dyad has parallel transformational experiences―the shared regressive states that follow continuous incomprehension of the unfolding therapeutic reality. Moreover, when the supervisory partners immerse themselves in a shared regressive state, a unique, inclusive, embodied, unsymbolized, and procedural understanding-without-reflection emerges spontaneously. Analytic writers describe such an understanding as unconscious knowledge, and existentialist writers describe it as prereflective consciousness. Before translating this unique understanding into a therapeutic narrative, the supervisor needs to recover from the regressive state and organize it according to discursive and logical analytic principles. From this perspective, the already existing experiential and analytic theoretical knowledge serves as a platform for creating new perceptions and analytic discourses.

Keywords: supervision, existentialism, prereflective consciousness, regressive states

Procedia PDF Downloads 119
9354 Developing Serious Games to Improve Learning Experience of Programming: A Case Study

Authors: Shan Jiang, Xinyu Tang

Abstract:

Game-based learning is an emerging pedagogy to make the learning experience more effective, enjoyable, and fun. However, most games used in classroom settings have been overly simplistic. This paper presents a case study on a Python-based online game designed to improve the effectiveness in both teaching and research in higher education. The proposed game system not only creates a fun and enjoyable experience for students to learn various topics in programming but also improves the effectiveness of teaching in several aspects, including material presentation, helping students to recognize the importance of the subjects, and linking theoretical concepts to practice. The proposed game system also serves as an information cyber-infrastructure that automatically collects and stores data from players. The data could be useful in research areas including human-computer interaction, decision making, opinion mining, and artificial intelligence. They further provide other possibilities beyond these areas due to the customizable nature of the game.

Keywords: game-based learning, programming, research-teaching integration, Hearthstone

Procedia PDF Downloads 165
9353 Path Integrals and Effective Field Theory of Large Scale Structure

Authors: Revant Nayar

Abstract:

In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.

Keywords: quantum field theory, cosmology, effective field theory, renormallisation

Procedia PDF Downloads 135
9352 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 139
9351 Students’ Perceptions and Attitudes for Integrating ICube Technology in the Solar System Lesson

Authors: Noran Adel Emara, Elham Ghazi Mohammad

Abstract:

Qatar University is engaged in a systemic education reform that includes integrating the latest and most effective technologies for teaching and learning. ICube is high-immersive virtual reality technology is used to teach educational scenarios that are difficult to teach in real situations. The trends toward delivering science education via virtual reality applications have accelerated in recent years. However, research on students perceptions of integrating virtual reality especially ICube technology is somehow limited. Students often have difficulties focusing attention on learning science topics that require imagination and easily lose attention and interest during the lesson. The aim of this study was to examine students’ perception of integrating ICube technology in the solar system lesson. Moreover, to explore how ICube could engage students in learning scientific concept of the solar system. The research framework included the following quantitative research design with data collection and analysis from questionnaire results. The solar system lesson was conducted by teacher candidates (Diploma students) who taught in the ICube virtual lab in Qatar University. A group of 30 students from eighth grade were randomly selected to participate in the study. Results showed that the students were extremely engaged in learning the solar system and responded positively to integrating ICube in teaching. Moreover, the students showed interest in learning more lessons through ICube as it provided them with valuable learning experience about complex situations.

Keywords: ICube, integrating technology, science education, virtual reality

Procedia PDF Downloads 302
9350 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
9349 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
9348 Beyond Learning Classrooms: An Undergraduate Experience at Instituto Politecnico Nacional Mexico

Authors: Jorge Sandoval Lezama, Arturo Ivan Sandoval Rodriguez, Jose Arturo Correa Arredondo

Abstract:

This work aims to share innovative educational experiences at IPN Mexico, that involve collaborative learning at institutional and global level through course competition and global collaboration projects. Students from universities in China, USA, South Korea, Canada and Mexico collaborate to design electric vehicles to solve global urban mobility problems. The participation of IPN students in the 2015-2016 global competition (São Paolo, Brazil and Cincinnati, USA) Reconfigurable Shared-Use Mobility Systems allowed to apply pedagogical strategies of groups of collaboration and of learning based on projects where they shared activities, commitments and goals, demonstrating that students were motivated to develop / self-generate their knowledge with greater meaning and understanding. One of the most evident achievements is that the students are self-managed, so the most advanced students train the students who join the project with CAD, CAE, CAM tools. Likewise, the motivation achieved is evident since in 2014 there were 12 students involved in the project, and there are currently more than 70 students.

Keywords: collaboration projects, global competency, course competition, active learning

Procedia PDF Downloads 275
9347 Increasing the Ability of State Senior High School 12 Pekanbaru Students in Writing an Analytical Exposition Text through Comic Strips

Authors: Budiman Budiman

Abstract:

This research aimed at describing and testing whether the students’ ability in writing analytical exposition text is increased by using comic strips at SMAN 12 Pekanbaru. The respondents of this study were the second-grade students, especially XI Science 3 academic year 2011-2012. The total number of students in this class was forty-two (42) students. The quantitative and qualitative data was collected by using writing test and observation sheets. The research finding reveals that there is a significant increase of students’ writing ability in writing analytical exposition text through comic strips. It can be proved by the average score of pre-test was 43.7 and the average score of post-test was 65.37. Besides, the students’ interest and motivation in learning are also improved. These can be seen from the increasing of students’ awareness and activeness in learning process based on observation sheets. The findings draw attention to the use of comic strips in teaching and learning is beneficial for better learning outcome.

Keywords: analytical exposition, comic strips, secondary school students, writing ability

Procedia PDF Downloads 153
9346 Effects of Different Kinds of Combined Action Observation and Motor Imagery on Improving Golf Putting Performance and Learning

Authors: Chi H. Lin, Chi C. Lin, Chih L. Hsieh

Abstract:

Motor Imagery (MI) alone or combined with action observation (AO) has been shown to enhance motor performance and skill learning. The most effective way to combine these techniques has received limited scientific scrutiny. In the present study, we examined the effects of simultaneous (i.e., observing an action whilst imagining carrying out the action concurrently), alternate (i.e., observing an action and then doing imagery related to that action consecutively) and synthesis (alternately perform action observation and imagery action and then perform observation and imagery action simultaneously) AOMI combinations on improving golf putting performance and learning. Participants, 45 university students who had no formal experience of using imagery for the study, were randomly allocated to one of four training groups: simultaneous action observation and motor imagery (S-AOMI), alternate action observation and motor imagery (A-AOMI), synthesis action observation and motor imagery (A-S-AOMI), and a control group. And it was applied 'Different Experimental Groups with Pre and Post Measured' designs. Participants underwent eighteen times of different interventions, which were happened three times a week and lasting for six weeks. We analyzed the information we received based on two-factor (group × times) mixed between and within analysis of variance to discuss the real effects on participants' golf putting performance and learning about different intervention methods of different types of combined action observation and motor imagery. After the intervention, we then used imagery questionnaire and journey to understand the condition and suggestion about different motor imagery and action observation intervention from the participants. The results revealed that the three experimental groups both are effective in putting performance and learning but not for the control group, and the A-S-AOMI group is significantly better effect than S-AOMI group on golf putting performance and learning. The results confirmed the effect of motor imagery combined with action observation on the performance and learning of golf putting. In particular, in the groups of synthesis, motor imagery, or action observation were alternately performed first and then performed motor imagery, and action observation simultaneously would have the best effectiveness.

Keywords: motor skill learning, motor imagery, action observation, simulation

Procedia PDF Downloads 140
9345 Flipping the Script: Opportunities, Challenges, and Threats of a Digital Revolution in Higher Education

Authors: James P. Takona

Abstract:

In a world that is experiencing sharp digital transformations guided by digital technologies, the potential of technology to drive transformation and evolution in the higher is apparent. Higher education is facing a paradigm shift that exposes susceptibilities and threats to fully online programs in the face of post-Covid-19 trends of commodification. This historical moment is likely to be remembered as a critical turning point from analog to digital degree-focused learning modalities, where the default became the pivot point of competition between higher education institutions. Fall 2020 marks a significant inflection point in higher education as students, educators, and government leaders scrutinize higher education's price and value propositions through the new lens of traditional lecture halls versus multiple digitized delivery modes. Online education has since tiled the way for a pedagogical shift in how teachers teach and students learn. The incremental growth of online education in the west can now be attributed to the increasing patronage among students, faculty, and institution administrators. More often than not, college instructors assume paraclete roles in this learning mode, while students become active collaborators and no longer passive learners. This paper offers valuable discernments into the threats, challenges, and opportunities of a massive digital revolution in servicing degree programs. To view digital instruction and learning demands for instructional practices that revolve around collaborative work, engaging students in learning activities, and an engagement that promotes active efforts to solicit strong connections between course activities and expected learning pace for all students. Appropriate digital technologies demand instructors and students need prior solid skills. Need for the use of digital technology to support instruction and learning, intelligent tutoring offers great promise, and failures at implementing digital learning may not improve outcomes for specific student populations. Digital learning benefits students differently depending on their circumstances and background and those of the institution and/or program. Students have alternative options, access to the convenience of learning anytime and anywhere, and the possibility of acquiring and developing new skills leading to lifelong learning.

Keywords: digi̇tized learning, digital education, collaborative work, high education, online education, digitize delivery

Procedia PDF Downloads 91
9344 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 131
9343 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 87
9342 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications

Authors: Xianwei Zheng, Yuan Yan Tang

Abstract:

Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.

Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis

Procedia PDF Downloads 342
9341 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective

Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar

Abstract:

There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.

Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts

Procedia PDF Downloads 114
9340 The Book of Lies: The Christian Bible's Colonialism over and Appropriation of Occultism

Authors: Samantha Huff

Abstract:

This research seeks to examine the relationship between occultism and the traditional religion of Christianity. The focus of this particular project is to deconstruct occultism and occult religion: how it develops, where it is applied, how and when it is applied. The next step is to make connections between the structure of occultism and the structure of Christianity. Do Christianity and the Occult appear, textually, the same way? What does that mean culturally? This project seeks to examine the historical similarities of occultism and Christianity practices and tradition, and how, as a whole, Christianity appropriates and colonializes occultism through examination into the Christian Bible and popular occult texts: The Book of the Law by Aleister Crowley and The Secret Doctrine: The Synthesis of Science, Religion, and Philosophy by Helena Petrovna Blavatsky. Through examining occultism and Christianity and applying it to popular cultural theories (Ritual Space by Nick Couldry, Muted Group Theory by Shirley Ardener, and Mythologies by Roland Barethes), it is entirely possible to see how Christianity appropriates occultism and uses their stronghold on society as a means to colonialize occult traditions and practices.

Keywords: appropriation, Christianity, colonialism, cultural theory, muted group theory, mythologies, occultism, ritual space

Procedia PDF Downloads 153
9339 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment

Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader

Abstract:

The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.

Keywords: dialogue, e-learning, FRAME, information system, natural language

Procedia PDF Downloads 377
9338 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 433
9337 Ranking Theory-The Paradigm Shift in Statistical Approach to the Issue of Ranking in a Sports League

Authors: E. Gouya Bozorg

Abstract:

The issue of ranking of sports teams, in particular soccer teams is of primary importance in the professional sports. However, it is still based on classical statistics and models outside of area of mathematics. Rigorous mathematics and then statistics despite the expectation held of them have not been able to effectively engage in the issue of ranking. It is something that requires serious pathology. The purpose of this study is to change the approach to get closer to mathematics proper for using in the ranking. We recommend using theoretical mathematics as a good option because it can hermeneutically obtain the theoretical concepts and criteria needful for the ranking from everyday language of a League. We have proposed a framework that puts the issue of ranking into a new space that we have applied in soccer as a case study. This is an experimental and theoretical study on the issue of ranking in a professional soccer league based on theoretical mathematics, followed by theoretical statistics. First, we showed the theoretical definition of constant number Є = 1.33 or ‘golden number’ of a soccer league. Then, we have defined the ‘efficiency of a team’ by this number and formula of μ = (Pts / (k.Є)) – 1, in which Pts is a point obtained by a team in k number of games played. Moreover, K.Є index has been used to show the theoretical median line in the league table and to compare top teams and bottom teams. Theoretical coefficient of σ= 1 / (1+ (Ptx / Ptxn)) has also been defined that in every match between the teams x, xn, with respect to the ability of a team and the points of both of them Ptx, Ptxn, and it gives a performance point resulting in a special ranking for the League. And it has been useful particularly in evaluating the performance of weaker teams. The current theory has been examined for the statistical data of 4 major European Leagues during the period of 1998-2014. Results of this study showed that the issue of ranking is dependent on appropriate theoretical indicators of a League. These indicators allowed us to find different forms of ranking of teams in a league including the ‘special table’ of a league. Furthermore, on this basis the issue of a record of team has been revised and amended. In addition, the theory of ranking can be used to compare and classify the different leagues and tournaments. Experimental results obtained from archival statistics of major professional leagues in the world in the past two decades have confirmed the theory. This topic introduces a new theory for ranking of a soccer league. Moreover, this theory can be used to compare different leagues and tournaments.

Keywords: efficiency of a team, ranking, special table, theoretical mathematic

Procedia PDF Downloads 418
9336 Educational Debriefing in Prehospital Medicine: A Qualitative Study Exploring Educational Debrief Facilitation and the Effects of Debriefing

Authors: Maria Ahmad, Michael Page, Danë Goodsman

Abstract:

‘Educational’ debriefing – a construct distinct from clinical debriefing – is used following simulated scenarios and is central to learning and development in fields ranging from aviation to emergency medicine. However, little research into educational debriefing in prehospital medicine exists. This qualitative study explored the facilitation and effects of prehospital educational debriefing and identified obstacles to debriefing, using the London’s Air Ambulance Pre-Hospital Care Course (PHCC) as a model. Method: Ethnographic observations of moulages and debriefs were conducted over two consecutive days of the PHCC in October 2019. Detailed contemporaneous field notes were made and analysed thematically. Subsequently, seven one-to-one, semi-structured interviews were conducted with four PHCC debrief facilitators and three course participants to explore their experiences of prehospital educational debriefing. Interview data were manually transcribed and analysed thematically. Results: Four overarching themes were identified: the approach to the facilitation of debriefs, effects of debriefing, facilitator development, and obstacles to debriefing. The unpredictable debriefing environment was seen as both hindering and paradoxically benefitting educational debriefing. Despite using varied debriefing structures, facilitators emphasised similar key debriefing components, including exploring participants’ reasoning and sharing experiences to improve learning and prevent future errors. Debriefing was associated with three principal effects: releasing emotion; learning and improving, particularly participant compound learning as they progressed through scenarios; and the application of learning to clinical practice. Facilitator training and feedback were central to facilitator learning and development. Several obstacles to debriefing were identified, including mismatch of participant and facilitator agendas, performance pressure, and time. Interestingly, when used appropriately in the educational environment, these obstacles may paradoxically enhance learning. Conclusions: Educational debriefing in prehospital medicine is complex. It requires the establishment of a safe learning environment, an understanding of participant agendas, and facilitator experience to maximise participant learning. Aspects unique to prehospital educational debriefing were identified, notably the unpredictable debriefing environment, interdisciplinary working, and the paradoxical benefit of educational obstacles for learning. This research also highlights aspects of educational debriefing not extensively detailed in the literature, such as compound participant learning, display of ‘professional honesty’ by facilitators, and facilitator learning, which require further exploration. Future research should also explore educational debriefing in other prehospital services.

Keywords: debriefing, prehospital medicine, prehospital medical education, pre-hospital care course

Procedia PDF Downloads 217
9335 The Integration of Apps for Communicative Competence in English Teaching

Authors: L. J. de Jager

Abstract:

In the South African English school curriculum, one of the aims is to achieve communicative competence, the knowledge of using language competently and appropriately in a speech community. Communicatively competent speakers should not only produce grammatically correct sentences but also produce contextually appropriate sentences for various purposes and in different situations. As most speakers of English are non-native speakers, achieving communicative competence remains a complex challenge. Moreover, the changing needs of society necessitate not merely language proficiency, but also technological proficiency. One of the burning issues in the South African educational landscape is the replacement of the standardised literacy model by the pedagogy of multiliteracies that incorporate, by default, the exploration of technological text forms that are part of learners’ everyday lives. It foresees learners as decoders, encoders, and manufacturers of their own futures by exploiting technological possibilities to constantly create and recreate meaning. As such, 21st century learners will feel comfortable working with multimodal texts that are intrinsically part of their lives and by doing so, become authors of their own learning experiences while teachers may become agents supporting learners to discover their capacity to acquire new digital skills for the century of multiliteracies. The aim is transformed practice where learners use their skills, ideas, and knowledge in new contexts. This paper reports on a research project on the integration of technology for language learning, based on the technological pedagogical content knowledge framework, conceptually founded in the theory of multiliteracies, and which aims to achieve communicative competence. The qualitative study uses the community of inquiry framework to answer the research question: How does the integration of technology transform language teaching of preservice teachers? Pre-service teachers in the Postgraduate Certificate of Education Programme with English as methodology were purposively selected to source and evaluate apps for teaching and learning English. The participants collaborated online in a dedicated Blackboard module, using discussion threads to sift through applicable apps and develop interactive lessons using the Apps. The selected apps were entered on to a predesigned Qualtrics form. Data from the online discussions, focus group interviews, and reflective journals were thematically and inductively analysed to determine the participants’ perceptions and experiences when integrating technology in lesson design and the extent to which communicative competence was achieved when using these apps. Findings indicate transformed practice among participants and research team members alike with a better than average technology acceptance and integration. Participants found value in online collaboration to develop and improve their own teaching practice by experiencing directly the benefits of integrating e-learning into the teaching of languages. It could not, however, be clearly determined whether communicative competence was improved. The findings of the project may potentially inform future e-learning activities, thus supporting student learning and development in follow-up cycles of the project.

Keywords: apps, communicative competence, English teaching, technology integration, technological pedagogical content knowledge

Procedia PDF Downloads 164
9334 The Relationship between Friedrich Nietzsche’s Dream and Intoxication: Through Analyzing the “Steppenwolf” by Hermann Hesse

Authors: Mengjie Liu

Abstract:

This essay mainly analyses the representation of the Apollo and Dionysus spirits in Hermann Hesse’s novel “Steppenwolf.” This analysis adopts a theoretical approach based on Fredrich Nietzsche’s theory of the two separate art worlds, dream and intoxication, which corresponds to the two art deities, Apollo and Dionysus. The essay will discuss Friedrich Nietzsche’s art and aesthetic theory of dream and intoxication in the first part. Then the essay will elaborate on the representation of the Apollo spirit and dream in “Steppenwolf” in the second section from two aspects: (1) Harry Haller’s (the main character) self-recognition and semblance with Hermina. (2) The realization of Hermina’s prophecy of the dream. Then the essay will analyze the representation of the Dionysus spirit and the intoxication in the third part by demonstrating Harry Haller’s self-forgetting and melting into the crowd. The essay will combine the two spirits in the fourth section and discuss the relationship between dream and intoxication as the stimulator (dream) and the realizing (intoxication). This essay takes Nietzsche’s theory as the basic foundation while also drawing sources from psychological analysis theories and other literature sources.

Keywords: dream, intoxication, Nietzsche, Steppenwolf

Procedia PDF Downloads 147
9333 An Attempt to Get Communication Design Students to Reflect: A Content Analysis of Students’ Learning Journals

Authors: C. K. Peter Chuah

Abstract:

Essentially, the intention of reflective journal is meant for students to develop higher-order thinking skills and to provide a 'space' to make their learning experience and thinking, making and feeling visible, i.e., it provides students an opportunity to evaluate their learning critically by focusing on the rationale behind their thinking, making and feeling. In addition, reflective journal also gets the students to focus on how could things be done differently—the possibility, alternative point of views, and opportunities for change. It is hoped that by getting communication design students to reflect at various intervals, they could move away from mere working on the design project and pay more attention to what they thought they have learned in relation to the development of their design ability. Unfortunately, a closer examination—through content analysis—of the learning journals submitted by a group of design students revealed that most of the reflections were descriptive and tended to be a summary of what occurred in the learning experience. While many students were able to describe what they did, very few were able to explain how they were able to do something critically. It can be concluded that to get design students to reflect is a fairly easy task, but to get them to reflect critically could be very challenging. To ensure that design students could benefit from the use of reflective journal as a tool to develop their critical thinking skills, a more systematic and structured approach to the introduction of critical thinking and reflective journal should be built into the design curriculum to provide as much practice and sufficient feedback as other studio subjects.

Keywords: communication design education, critical thinking, reflection, reflective journal

Procedia PDF Downloads 286
9332 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation

Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher

Abstract:

The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.

Keywords: simulation, SSC, teaching, medical students

Procedia PDF Downloads 123
9331 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 252
9330 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90