Search results for: dual phase lag model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20899

Search results for: dual phase lag model

18889 Markov Characteristics of the Power Line Communication Channels in China

Authors: Ming-Yue Zhai

Abstract:

Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.

Keywords: power line communication, channel model, markovian, information theory, first-order

Procedia PDF Downloads 415
18888 Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure

Authors: Shinji Ukita, Naohiro Nakamura, Yuji Miyazu

Abstract:

In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design.

Keywords: initial damping model, damping ratio, dynamic analysis, hysteretic model, natural frequency

Procedia PDF Downloads 178
18887 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 399
18886 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis

Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan

Abstract:

This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.

Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis

Procedia PDF Downloads 229
18885 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology

Authors: Tatsuhiko Aizawa, Hiroshi Morita

Abstract:

The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.

Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch

Procedia PDF Downloads 91
18884 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 338
18883 Model for Assessment of Quality Airport Services

Authors: Cristina da Silva Torres, José Luis Duarte Ribeiro, Maria Auxiliadora Cannarozzo Tinoco

Abstract:

As a result of the rapid growth of the Brazilian Air Transport, many airports are at the limit of their capacities and have a reduction in the quality of services provided. Thus, there is a need of models for assessing the quality of airport services. Because of this, the main objective of this work is to propose a model for the evaluation of quality attributes in airport services. To this end, we used the method composed by literature review and interview. Structured a working method composed by 5 steps, which resulted in a model to evaluate the quality of airport services, consisting of 8 dimensions and 45 attributes. Was used as base for model definition the process mapping of boarding and landing processes of passengers and luggage. As a contribution of this work is the integration of management process with structuring models to assess the quality of services in airport environments.

Keywords: quality airport services, model for identification of attributes quality, air transport, passenger

Procedia PDF Downloads 539
18882 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned

Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh

Abstract:

This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.

Keywords: activity-based costing, activity-based management, construction, architectural aluminum

Procedia PDF Downloads 108
18881 Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl

Authors: E. S. Kozlyakova, A. A. Eliseev, A. V. Moskin, A. Y. Akhrorov, P. S. Berdonosov, V. A. Dolgikh, K. N. Denisova, P. Lemmens, B. Rahaman, S. Das, T. Saha-Dasgupta, A. N. Vasiliev, O. S. Volkova

Abstract:

Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers.

Keywords: dipole-dipole interactions, low dimensional magnetism, selenite, spin canting

Procedia PDF Downloads 168
18880 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hardness

Procedia PDF Downloads 281
18879 Extending Early High Energy Physics Studies with a Tri-Preon Model

Authors: Peter J. Riley

Abstract:

Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.

Keywords: HEP, particle physics, standard model, Tri-Preon model

Procedia PDF Downloads 73
18878 Before Decision: Career Motivation of Teacher Candidates

Authors: Pál Iván Szontagh

Abstract:

We suppose that today, the motivation for the career of a pedagogue (including its existential, organizational and infrastructural conditions) is different from the level of commitment to the profession of an educator (which can be experienced informally, or outside of the public education system). In our research, we made efforts to address the widest possible range of student elementary teachers, and to interpret their responses using different filters. In the first phase of our study, we analyzed first-year kindergarten teacher students’ career motivation and commitment to the profession, and in the second phase, that of final-year kindergarten teacher candidates. In the third phase, we conducted surveys to explore students’ motivation for the profession and the career path of a pedagogue in four countries of the Carpathian Basin (Hungary, Slovakia, Romania and Serbia). The surveys were conducted in 17 campuses of 11 Hungarian teacher’s training colleges and universities. Finally, we extended the survey to practicing graduates preparing for their on-the-job rating examination. Based on our results, in all breakdowns, regardless of age group, training institute or - in part - geographical location and nationality, it is proven that lack of social- and financial esteem of the profession poses serious risks for recruitment and retention of teachers. As a summary, we searched for significant differences between the professional- and career motivations of the three respondent groups (kindergarten teacher students, elementary teacher students and practicing teachers), i.e. the motivation factors that change the most with education and/or with the time spent on the job. Based on our results, in all breakdowns, regardless of age group, training institute or - in part - geographical location and nationality, it is proven that lack of social- and financial esteem of the profession poses serious risks for recruitment and retention of teachers.

Keywords: career motivation, career socialization, professional motivation, teacher training

Procedia PDF Downloads 140
18877 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario

Authors: Vinod Kumar Jaysaval, Prateek Agarwal

Abstract:

Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.

Keywords: airborne radar, blind zone, clutter, probability of detection

Procedia PDF Downloads 472
18876 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 110
18875 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 201
18874 Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry

Authors: Reza Pashaei, Reda Dzingelevičienė

Abstract:

An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples.

Keywords: fish, liquid chromatography, mass spectrometry, pharmaceuticals, shrimp, solid-phase extraction

Procedia PDF Downloads 265
18873 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 395
18872 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 379
18871 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance

Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier

Abstract:

Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.

Keywords: durability, PEMFC, recovery procedure, reversible degradation

Procedia PDF Downloads 137
18870 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 308
18869 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation

Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner

Abstract:

A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.

Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone

Procedia PDF Downloads 355
18868 A Business Model Design Process for Social Enterprises: The Critical Role of the Environment

Authors: Hadia Abdel Aziz, Raghda El Ebrashi

Abstract:

Business models are shaped by their design space or the environment they are designed to be implemented in. The rapidly changing economic, technological, political, regulatory and market external environment severely affects business logic. This is particularly true for social enterprises whose core mission is to transform their environments, and thus, their whole business logic revolves around the interchange between the enterprise and the environment. The context in which social business operates imposes different business design constraints while at the same time, open up new design opportunities. It is also affected to a great extent by the impact that successful enterprises generate; a continuous loop of interaction that needs to be managed through a dynamic capability in order to generate a lasting powerful impact. This conceptual research synthesizes and analyzes literature on social enterprise, social enterprise business models, business model innovation, business model design, and the open system view theory to propose a new business model design process for social enterprises that takes into account the critical role of environmental factors. This process would help the social enterprise develop a dynamic capability that ensures the alignment of its business model to its environmental context, thus, maximizing its probability of success.

Keywords: social enterprise, business model, business model design, business model environment

Procedia PDF Downloads 375
18867 Metaphor Institutionalization as Phase Transition: Case Studies of Chinese Metaphors

Authors: Xuri Tang, Ting Pan

Abstract:

Metaphor institutionalization refers to the propagation of a metaphor that leads to its acceptance in speech community as a norm of the language. Such knowledge is important to both theoretical studies of metaphor and practical disciplines such as lexicography and language generation. This paper reports an empirical study of metaphor institutionalization of 14 Chinese metaphors. It first explores the pattern of metaphor institutionalization by fitting the logistic function (or S-shaped curve) to time series data of conventionality of the metaphors that are automatically obtained from a large-scale diachronic Chinese corpus. Then it reports a questionnaire-based survey on the propagation scale of each metaphor, which is measured by the average number of subjects that can easily understand the metaphorical expressions. The study provides two pieces of evidence supporting the hypothesis that metaphor institutionalization is a phrase transition: (1) the pattern of metaphor institutionalization is an S-shaped curve and (2) institutionalized metaphors generally do not propagate to the whole community but remain in equilibrium state. This conclusion helps distinguish metaphor institutionalization from topicalization and other types of semantic change.

Keywords: metaphor institutionalization, phase transition, propagation scale, s-shaped curve

Procedia PDF Downloads 173
18866 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 84
18865 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 420
18864 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 152
18863 Social Media Retailing in the Creator Economy

Authors: Julianne Cai, Weili Xue, Yibin Wu

Abstract:

Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.

Keywords: content creation, creator economy, incentive strategy, platform retailing

Procedia PDF Downloads 119
18862 Moving beyond the Social Model of Disability by Engaging in Anti-Oppressive Social Work Practice

Authors: Irene Carter, Roy Hanes, Judy MacDonald

Abstract:

Considering that disability is universal and people with disabilities are part of all societies; that there is a connection between the disabled individual and the societal; and that it is society and social arrangements that disable people with impairments, contemporary disability discourse emphasizes the social model of disability to counter medical and rehabilitative models of disability. However, the social model does not go far enough in addressing the issues of oppression and inclusion. The authors indicate that the social model does not specifically or adequately denote the oppression of persons with disabilities, which is a central component of progressive social work practice with people with disabilities. The social model of disability does not go far enough in deconstructing disability and offering social workers, as well as people with disabilities a way of moving forward in terms of practice anchored in individual, familial and societal change. The social model of disability is expanded by incorporating principles of anti-oppression social work practice. Although the contextual analysis of the social model of disability is an important component there remains a need for social workers to provide service to individuals and their families, which will be illustrated through anti-oppressive practice (AOP). By applying an anti-oppressive model of practice to the above definitions, the authors not only deconstruct disability paradigms but illustrate how AOP offers a framework for social workers to engage with people with disabilities at the individual, familial and community levels of practice, promoting an emancipatory focus in working with people with disabilities. An anti- social- oppression social work model of disability connects the day-to-day hardships of people with disabilities to the direct consequence of oppression in the form of ableism. AOP theory finds many of its basic concepts within social-oppression theory and the social model of disability. It is often the case that practitioners, including social workers and psychologists, define people with disabilities’ as having or being a problem with the focus placed upon adjustment and coping. A case example will be used to illustrate how an AOP paradigm offers social work a more comprehensive and critical analysis and practice model for social work practice with and for people with disabilities than the traditional medical model, rehabilitative and social model approaches.

Keywords: anti-oppressive practice, disability, people with disabilities, social model of disability

Procedia PDF Downloads 1095
18861 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 527
18860 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 545