Search results for: drug property prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5656

Search results for: drug property prediction

3646 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
3645 Measures for Conflict Management in Nigerian Higher Institutions

Authors: Oyelade Oluwatoyin

Abstract:

The phenomenon of crises in educational sector in Nigeria has reached its peak in the 21st century. Thus, this paper examines the strategies that can be used in managing the conflict situation in Nigeria Higher Institution of learning. The causes of conflicts such as inadequate funding, insufficient school facilities, poor working condition, poor enrolment, proliferation of higher institutions and unfavourable administrative decision are the major detriment of law and order i.e. strike action, destruction of property and programmes coupled with the student unrest. This write-up will make use of the available information and with the aim of adding value to existing knowledge. It was recommend that steps should be taken by policy maker to prevent scourge of conflicts in tertiary institutions in Nigeria

Keywords: conflicts, higher institutions, management, measures

Procedia PDF Downloads 370
3644 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 252
3643 Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco

Authors: Elachouri Mostafa, Fakchich Jamila, Lazaar Jamila, Elmadmad Mohammed, Marhom Mostafa

Abstract:

Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco.

Keywords: Morocco, medicinal plants, ethnopharmacology, natural products, drug-discovery

Procedia PDF Downloads 316
3642 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
3641 Effective Layer-by-layer Chemical Grafting of a Reactive Oxazoline Polymer and MWCNTs onto Carbon Fibers for Enhancing Mechanical Properties of Composites using Polystyrene as a Model Thermoplastic Matrix

Authors: Ryoma Tokonami, Teruya Goto, Tatsuhiro Takahashi,

Abstract:

For enhancing the mechanical property ofcarbon fiber reinforced plastic (CFRP), the surface modification of carbon fiber (CF) by multi-walled carbon nanotube (MWCNT) has received considerable attention using direct MWCNT growth on CF with a catalysis, MWCNT electrophoresis, and layer-by-layer of MWCNT with reactive polymers, etc. Among above approaches, the layer-by-layer method is the simplest process, however, the amount of MWCNTs on CF is very little, resulting in the small amount of improvement of the mechanical property of the composite. The remaining amount of MWCNT on CF after melt mixing of CF (short fiber) with thermoplastic matrix polymer was not examined clearly in the former studies. The present research aims to propose an effective layer-by-layer chemical grafting of a highly reactive oxazoline polymer, which has not been used before, and MWCNTs onto CF using the highly reactivity of oxazoline and COOH on the surface of CF and MWCNTs.With layer-by-layer method, the first uniform chemically bonded mono molecular layer on carbon fiber was formed by chemical surface reaction of carbon fiber, a reactive oxazoline polymer solution between COOH of carbon fiber and oxazoline. The second chemically bonded uniform layer of MWCNTs on the first layer was prepared through the first layer coated carbon fiber in MWCNT dispersion solution by chemical reaction between oxazoline and COOH of MWCNTs. The quantitative analysis of MWCNTs on carbon fiber was performed, showing 0.44 wt.% of MWCNTs based on carbon fiber, which is much larger amount compared with the former studies in layer-by-layer method. In addition, MWCNTs were also observed uniform coating on carbon fiber by scanning electron micrograph (SEM). Carbon fiber composites were prepared by melting mixing using polystyrene (PS) as a thermoplastic matrix because of easy removal of PS by solvent for additional analysis, resulting the 20% of enhancement of tensile strength and modulus by tensile strength test. It was confirmed bySEM the layer-by-layer structure on carbon fibers were remained after the melt mixing by removing PS with a solvent. As a conclusion, the effectiveness for the enhancement of the mechanical properties of CF(short fiber)/PS composite using the highly reactive oxazoline polymer for the first layer and MWCNT for the second layer, which act as the physical anchor, was demonstrated.

Keywords: interface, layer-by-layer, multi walled carbon nanotubes (MWCNTs), oxazoline

Procedia PDF Downloads 203
3640 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease

Authors: Vaishali Patil, Neeraj Masand

Abstract:

In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.

Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR

Procedia PDF Downloads 255
3639 Characteristics of Silicon Integrated Vertical Carbon Nanotube Field-Effect Transistors

Authors: Jingqi Li

Abstract:

A new vertical carbon nanotube field effect transistor (CNTFET) has been developed. The source, drain and gate are vertically stacked in this structure. The carbon nanotubes are put on the side wall of the vertical stack. Unique transfer characteristics which depend on both silicon type and the sign of drain voltage have been observed in silicon integrated CNTFETs. The significant advantage of this CNTFET is that the short channel of the transistor can be fabricated without using complicate lithography technique.

Keywords: carbon nanotubes, field-effect transistors, electrical property, short channel fabrication

Procedia PDF Downloads 361
3638 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
3637 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: M. Mirmohammadi, S. Taghdisi, F. Anali

Abstract:

Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.

Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis

Procedia PDF Downloads 95
3636 The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids

Authors: Esmat Mohammadinasab, Mostafa Sadeghi

Abstract:

In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here.

Keywords: amino acids, DFT Method, molecular descriptor, thermodynamic properties

Procedia PDF Downloads 432
3635 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
3634 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 239
3633 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
3632 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 109
3631 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 259
3630 Quality of Life Among People with Mental Illness Attending a Psychiatric Outpatient Clinic in Ethiopia: A Structural Equation Model

Authors: Wondale Getinet Alemu, Lillian Mwanri, Clemence Due, Telake Azale, Anna Ziersch

Abstract:

Background: Mental illness is one of the most severe, chronic, and disabling public health problems that affect patients' Quality of life (QoL). Improving the QoL for people with mental illness is one of the most critical steps in stopping disease progression and avoiding complications of mental illness. Therefore, we aimed to assess the QoL and its determinants in patients with mental illness in outpatient clinics in Northwest Ethiopia in 2023. Methods: A facility-based cross-sectional study was conducted among people with mental illness in an outpatient clinic in Ethiopia. The sampling interval was decided by dividing the total number of study participants who had a follow-up appointment during the data collection period (2400) by the total sample size of 638, with the starting point selected by lottery method. The interviewer-administered WHOQOL BREF-26 tool was used to measure the QoL of people with mental illness. The domains and Health-Related Quality of Life (HRQoL) were identified. The indirect and direct effects of variables were calculated using structural equation modeling with SPSS-28 and Amos-28 software. A p-value of < 0.05 and a 95% CI were used to evaluate statistical significance. Results: A total of 636 (99.7%) participants responded and completed the WHOQOL-BREF questionnaire. The mean score of overall HRQoL of people with mental illness in the outpatient clinic was (49.6 ± 10 Sd). The highest QoL was found in the physical health domain (50.67 ±9.5 Sd), and the lowest mean QoL was found in the psychological health domain (48.41±10 Sd). Rural residents, drug nonadherence, suicidal ideation, not getting counseling, moderate or severe subjective severity, the family does not participate in patient care, and a family history of mental illness had an indirect negative effect on HRQoL. Alcohol use and psychological health domain had a direct positive effect on QoL. Furthermore, objective severity of illness, having low self-esteem, and having a history of mental illness in the family had both direct and indirect effects on QoL. Furthermore, sociodemographic factors (residence, educational status, marital status), social support-related factors (self-esteem, family not participating in patient care), substance use factors (alcohol use, tobacco use,) and clinical factors (objective and subjective severity of illness, not getting counseling, suicidal ideation, number of episodes, comorbid illness, family history of mental illness, poor drug adherence) directly and indirectly affected QoL. Conclusions: In this study, the QoL of people with mental illness was poor, with the psychological health domain being the most affected. Sociodemographic factors, social support-related factors, drug use factors, and clinical factors directly and indirectly, affect QoL through the mediator variables of physical health domains, psychological health domains, social relation health domains, and environmental health domains. In order to improve the QoL of people with mental illnesses, we recommend that emphasis be given to addressing the scourge of mental health, including the development of policy and practice drivers that address the above-identified factors.

Keywords: quality of life, mental wellbeing, mental illness, mental disorder, Ethiopia

Procedia PDF Downloads 80
3629 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market

Authors: Serpil Türkyılmaz, Mesut Balıbey

Abstract:

In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.

Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break

Procedia PDF Downloads 291
3628 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 183
3627 Monitoring the Responses to Nociceptive Stimuli During General Anesthesia Based on Electroencephalographic Signals in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA)

Authors: Ofelia Loani Elvir Lazo, Roya Yumul, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

Background: Monitoring the anti-nociceptive drug effect is useful because a sudden and strong nociceptive stimulus may result in untoward autonomic responses and muscular reflex movements. Monitoring the anti-nociceptive effects of perioperative medications has long been desiredas a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively.To this end, electroencephalogram (EEG) based tools includingBIS and qCON were designed to provide information about the depth of sedation whileqNOXwas produced to informon the degree of antinociception.The goal of this study was to compare the reliability of qCON/qNOX to BIS asspecific indicators of response to nociceptive stimulation. Methods: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board(IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed o62n all patientsprior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. Results: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from74±13 mm Hg at baseline to 84± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76±12 BPM at baseline to 80±13BPM during noxious stimuli[p=0.078] respectively). Conclusion: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices.

Keywords: antinociception, bispectral index (BIS), general anesthesia, laryngeal mask airway, qCON/qNOX

Procedia PDF Downloads 92
3626 Sustainable Housing and Urban Development: A Study on the Soon-To-Be-Old Population's Impetus to Migrate

Authors: Tristance Kee

Abstract:

With the unprecedented increase in elderly population globally, it is critical to search for new sustainable housing and urban development alternatives to traditional housing options. This research examines concepts of elderly migration pattern in the context of a high density city in Hong Kong to Mainland China. The research objectives are to: 1) explore the relationships between soon-to-be-old elderly and their intentions to move to Mainland upon retirement and their demographic characteristics; and 2) What are the desired amenities, locational factors and activities that are expected in the soon-to-be-old generation’s retirement housing environment? Primary data was collected through questionnaire survey conducted using random sampling method with respondents aged between 45-64 years old. The face-to-face survey was completed by 500 respondents. The survey was divided into four sections. The first section focused on respondent’s demographic information such as gender, age, education attainment, monthly income, housing tenure type and their visits to Mainland China. The second section focused on their retirement plans in terms of intended retirement age, prospective retirement funding and retirement housing options. The third section focused on the respondent’s attitudes toward retiring in Mainland for housing. It asked about their intentions to migrate retire into Mainland and incentives to retire in Hong Kong. The fourth section focused on respondent’s ideal housing environment including preferred housing amenities, desired living environment and retirement activities. The dependent variable in this study was ‘respondent’s consideration to move to Mainland China upon retirement’. Eight primary independent variables were integrated into the study to identify the correlations between them and retirement migration plan. The independent variables include: gender, age, marital status, monthly income, present housing tenure type, property ownership in Hong Kong, relationship with Mainland and the frequency of visiting Mainland China. In addition to the above independent variables, respondents were asked to indicate their retirement plans (retirement age, funding sources and retirement housing options), incentives to migrate to retire (choices included: property ownership, family relations, cost of living, living environment, medical facilities, government welfare benefits, etc.), perceived ideal retirement life qualities including desired amenities (sports, medical and leisure facilities etc.), desired locational qualities (green open space, convenient transport options and accessibility to urban settings etc.) and desired retirement activities (home-based leisure, elderly friendly sports, cultural activities, child care, social activities, etc.). The finding shows correlations between the used independent variables and consideration to migrate for housing options. The two independent variables indicated a possible correlation were gender and the frequency of visiting Mainland at present. When considering the increasing property prices across the border and strong social relationships, potential retirement migration is a very subjective decision that could vary from person to person. This research adds knowledge to housing research and migration study. Although the research is based in Mainland, most of the characteristics identified including better medical services, government welfare and sound urban amenities are shared qualities for all sustainable urban development and housing strategies.

Keywords: elderly migration, housing alternative, soon-to-be-old, sustainable environment

Procedia PDF Downloads 211
3625 A Comparative Study of the Physicochemical and Structural Properties of Quinoa Protein Isolate and Yellow Squat Shrimp Byproduct Protein Isolate through pH-Shifting Modification

Authors: María José Bugueño, Natalia Jaime, Cristian Castro, Diego Naranjo, Guido Trautmann, Mario Pérez-Won, Vilbett Briones-Labarca

Abstract:

Proteins play a crucial role in various prepared foods, including dairy products, drinks, emulsions, and ready meals. These food proteins are naturally present in food waste and byproducts. The alkaline extraction and acid precipitation method is commonly used to extract proteins from plants and animals due to its product stability, cost-effectiveness, and ease of use. This study aimed to investigate the impact of pH-shifting storage at two different pH levels on the conformational changes affecting the physicochemical and functional properties of quinoa protein isolate (QPI) and yellow shrimp byproduct protein isolate (YSPI). The QPI and YSPI were extracted using the alkaline extraction-isoelectric precipitation method. The dispersions were adjusted to pH 4 or 12, stirred for 2 hours at 20°C to achieve a uniform dispersion, and then freeze-dried. Various analyses were conducted, including flexibility (F), free sulfhydryl content (Ho), emulsifying activity (EA), emulsifying capacity (EC), water holding capacity (WHC), oil holding capacity (OHC), intrinsic fluorescence, ultraviolet spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to assess the properties of the protein isolates. pH-shifting at pH 11 and 12 for QPI and YSPI, respectively, significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. Additionally, the pH 11 and 12 treatments significantly improved F, Ho, EA, WHC, OHC, intrinsic fluorescence, ultraviolet spectroscopy, DSC, and FTIR. The increase in Ho was due to disulfide bond disruption, which produced more protein sub-units than other treatments for both proteins. This study provides theoretical support for comprehensively elucidating the functional properties of protein isolates, promoting the application of plant proteins and marine byproducts. The pH-shifting process effectively improves the emulsifying property and stability of QPI and YSPI, which can be considered potential plant-based or marine byproduct-based emulsifiers for use in the food industry.

Keywords: quinoa protein, yellow shrimp by-product protein, physicochemical properties, structural properties

Procedia PDF Downloads 44
3624 Siderophore Receptor Protein from Klebsiella pneumoniae as a Promising Immunogen for Serotype-Independent Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae causes a wide range of infections, including urinary tract infections, sepsis, bacteremia, pneumonia, and liver abscesses. The emergence of multi-drug resistance in this bacterium led to a major setback for clinical management. WHO also endorsed a need for finding alternative therapy to antibiotics for the treatment of these infections. Development of vaccines and passive antibody therapy has been proven as a potent alternative to antibiotics in the case of MDR, XDR, and PDR Klebsiella infections. Siderophore receptors have been demonstrated to be overexpressed for the internalization of iron siderophore complexes during infections in most Gram-negative bacteria. For the present study, immune response to siderophore receptors to establish this protein as a potential immunogen for the development of therapeutic leads was explored. Clinical strains of Klebsiella pneumoniae were grown in iron-deficient conditions, and the iron-regulated outer membrane proteins were extracted and characterized through mass spectrometry for specific identification. The gene for identified protein was cloned in pET- 28a vector and expressed in E. coli. The native protein and the recombinant protein were isolated and purified and used as antigens for the generation of immune response in BALB/c mice. The native protein of Klebsiella pneumoniae grown in iron-deficient conditions was identified as FepA (Ferrienterobactin receptor) and other siderophore receptors. This 80 kDa protein generated an immune response in BALB/c mice. The antiserum from mice after subsequent booster doses was collected and showed binding with FepA protein in western blot and phagocytic uptake of the K. pneumoniae in the presence antiserum from immunized mice also observed from the animal studies after bacterial challenge post immunisation in mice have shown bacterial clearance. The antiserum from mice showed binding and clearance of the Klebsiella pneumoniae bacteria in vitro and in vivo. These antigens used for generating an active immune response in mice can further be used for therapeutic monoclonal antibody development against Klebsiella pneumoniae infections.

Keywords: antiserum, FepA, Klebsiella pneumoniae, multi drug resistance, siderophore receptor

Procedia PDF Downloads 102
3623 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis

Authors: Sara Segura, Diego Nuñez, Miryam Villamil

Abstract:

In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.

Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis

Procedia PDF Downloads 295
3622 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
3621 A Cluster Randomised Controlled Trial Investigating the Impact of Integrating Mass Drug Administration Treating Soil Transmitted Helminths with Mass Dog Rabies Vaccination in Remote Communities in Tanzania

Authors: Felix Lankester, Alicia Davis, Safari Kinung'hi, Catherine Bunga, Shayo Alkara, Imam Mzimbiri, Jonathan Yoder, Sarah Cleaveland, Guy H. Palmer

Abstract:

Achieving the London Declaration goal of a 90% reduction in neglected tropical diseases (NTDs) by 2030 requires cost-effective strategies that attain high and comprehensive coverage. The first objective of this trial was to assess the impact on cost and coverage of employing a novel integrative One Health approach linking two NTD control programs: mass drug administration (MDA) for soil-transmitted helminths in humans (STH) and mass dog rabies vaccination (MDRV). The second objective was to compare the coverage achieved by the MDA, a community-wide deworming intervention, with that of the existing national primary school-based deworming program (NSDP), with particular focus on the proportion of primary school-age children reached and their school enrolment status. Our approach was unconventional because, in line with the One Health approach to disease control, it coupled the responsibilities and resources of the Ministries responsible for human and animal health into one program with the shared aim of preventing multiple NTDs. The trial was carried out in hard-to-reach pastoral communities comprising 24 villages of the Ngorongoro District, Tanzania, randomly allocated to either Arm A (MDA and MDRV), Arm B (MDA only) or Arm C (MDRV only). Objective one: The percentage of people in each target village that received treatment through MDA in Arms A and B was 63% and 65%, respectively (χ2 = 1, p = 0.32). The percentage of dogs vaccinated in Arm A and C was 70% and 81%, respectively (χ2 =9, p = 0.003). It took 33% less time for a single person and a dog to attend the integrated delivery than two separate events. Cost per dose (including delivery) was lower under the integrated strategy, with delivery of deworming and rabies vaccination reduced by $0.13 (54%) and $0.85 (19%) per dose, respectively. Despite a slight reduction in the proportion of village dogs vaccinated in the integrated event, both the integrated and non-integrated strategies achieved the target threshold of 70% required to eliminate rabies. Objective two: The percentages of primary school age children enrolled in school that was reached by this trial (73%) and the existing NSDP (80%) were not significantly different (F = 0.9, p = 0.36). However, of the primary school age children treated in this trial, 46% were not enrolled in school. Furthermore, 86% of the people treated would have been outside the reach of the NSDP because they were not primary school age or were primary school age children not enrolled in school. The comparable reach, the substantial reductions in cost per dose delivered and the decrease in participants’ time support this integrated One Health approach to control multiple NTDs. Further, the recorded level of non-enrolment at primary school suggests that, in remote areas, school-based delivery strategies could miss a large fraction of school-age children and that programs that focus delivery solely at the level of the primary school will miss a substantial proportion of both primary school age children as well as other individuals from the community. We have shown that these populations can be effectively reached through extramural programs.

Keywords: canine mediated human rabies, integrated health interventions, mass drug administration, neglected tropical disease, One Health, soil-transmitted helminths

Procedia PDF Downloads 181
3620 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea

Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi

Abstract:

Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.

Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow

Procedia PDF Downloads 123
3619 Teleconnection between El Nino-Southern Oscillation and Seasonal Flow of the Surma River and Possibilities of Long Range Flood Forecasting

Authors: Monika Saha, A. T. M. Hasan Zobeyer, Nasreen Jahan

Abstract:

El Nino-Southern Oscillation (ENSO) is the interaction between atmosphere and ocean in tropical Pacific which causes inconsistent warm/cold weather in tropical central and eastern Pacific Ocean. Due to the impact of climate change, ENSO events are becoming stronger in recent times, and therefore it is very important to study the influence of ENSO in climate studies. Bangladesh, being in the low-lying deltaic floodplain, experiences the worst consequences due to flooding every year. To reduce the catastrophe of severe flooding events, non-structural measures such as flood forecasting can be helpful in taking adequate precautions and steps. Forecasting seasonal flood with a longer lead time of several months is a key component of flood damage control and water management. The objective of this research is to identify the possible strength of teleconnection between ENSO and river flow of Surma and examine the potential possibility of long lead flood forecasting in the wet season. Surma is one of the major rivers of Bangladesh and is a part of the Surma-Meghna river system. In this research, sea surface temperature (SST) has been considered as the ENSO index and the lead time is at least a few months which is greater than the basin response time. The teleconnection has been assessed by the correlation analysis between July-August-September (JAS) flow of Surma and SST of Nino 4 region of the corresponding months. Cumulative frequency distribution of standardized JAS flow of Surma has also been determined as part of assessing the possible teleconnection. Discharge data of Surma river from 1975 to 2015 is used in this analysis, and remarkable increased value of correlation coefficient between flow and ENSO has been observed from 1985. From the cumulative frequency distribution of the standardized JAS flow, it has been marked that in any year the JAS flow has approximately 50% probability of exceeding the long-term average JAS flow. During El Nino year (warm episode of ENSO) this probability of exceedance drops to 23% and while in La Nina year (cold episode of ENSO) it increases to 78%. Discriminant analysis which is known as 'Categoric Prediction' has been performed to identify the possibilities of long lead flood forecasting. It has helped to categorize the flow data (high, average and low) based on the classification of predicted SST (warm, normal and cold). From the discriminant analysis, it has been found that for Surma river, the probability of a high flood in the cold period is 75% and the probability of a low flood in the warm period is 33%. A synoptic parameter, forecasting index (FI) has also been calculated here to judge the forecast skill and to compare different forecasts. This study will help the concerned authorities and the stakeholders to take long-term water resources decisions and formulate policies on river basin management which will reduce possible damage of life, agriculture, and property.

Keywords: El Nino-Southern Oscillation, sea surface temperature, surma river, teleconnection, cumulative frequency distribution, discriminant analysis, forecasting index

Procedia PDF Downloads 154
3618 Mobile Phone Text Reminders and Voice Call Follow-ups Improve Attendance for Community Retail Pharmacy Refills; Learnings from Lango Sub-region in Northern Uganda

Authors: Jonathan Ogwal, Louis H. Kamulegeya, John M. Bwanika, Davis Musinguzi

Abstract:

Introduction: Community retail Pharmacy drug distribution points (CRPDDP) were implemented in the Lango sub-region as part of the Ministry of Health’s response to improving access and adherence to antiretroviral treatment (ART). Clients received their ART refills from nearby local pharmacies; as such, the need for continuous engagement through mobile phone appointment reminders and health messages. We share learnings from the implementation of mobile text reminders and voice call follow-ups among ART clients attending the CRPDDP program in northern Uganda. Methods: A retrospective data review of electronic medical records from four pharmacies allocated for CRPDDP in the Lira and Apac districts of the Lango sub-region in Northern Uganda was done from February to August 2022. The process involved collecting phone contacts of eligible clients from the health facility appointment register and uploading them onto a messaging platform customized by Rapid-pro, an open-source software. Client information, including code name, phone number, next appointment date, and the allocated pharmacy for ART refill, was collected and kept confidential. Contacts received appointment reminder messages and other messages on positive living as an ART client. Routine voice call follow-ups were done to ascertain the picking of ART from the refill pharmacy. Findings: In total, 1,354 clients were reached from the four allocated pharmacies found in urban centers. 972 clients received short message service (SMS) appointment reminders, and 382 were followed up through voice calls. The majority (75%) of the clients returned for refills on the appointed date, 20% returned within four days after the appointment date, and the remaining 5% needed follow-up where they reported that they were not in the district by the appointment date due to other engagements. Conclusion: The use of mobile text reminders and voice call follow-ups improves the attendance of community retail pharmacy refills.

Keywords: antiretroviral treatment, community retail drug distribution points, mobile text reminders, voice call follow-up

Procedia PDF Downloads 99
3617 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 89