Search results for: climatic classification
853 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 125852 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 411851 An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)
Authors: Ruangdech Sirikit
Abstract:
The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance.Keywords: differential item functioning, differential test functioning, SWUSAT, aptitude test
Procedia PDF Downloads 611850 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 339849 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 216848 Design Criteria Recommendation to Achieve Accessibility In-House to Different Users
Authors: Claudia Valderrama-Ulloa, Cristian Schmitt, Juan Pablo Marchetti, Viviana Bucarey
Abstract:
Access to adequate housing is a fundamental human right and a crucial factor for health. Housing should be inclusive, accessible, and able to meet the needs of all its inhabitants at every stage of their lives without hindering their health, autonomy, or independence. This article addresses the importance of designing housing for people with disabilities, which varies depending on individual abilities, preferences, and cultural considerations. Based on the components of the International Classification of Functioning, Disability and Health, wheelchair users, little people (achondroplasia), children with autism spectrum disorder and Down syndrome were characterized, and six domains of activities related to daily life inside homes were defined. The article describes the main barriers homes present for this group of people. It proposes a list of architectural and design aspects to reduce barriers to housing use. The aspects are divided into three main groups: space management, building services, and supporting facilities. The article emphasizes the importance of consulting professionals and users with experience designing for diverse needs to create inclusive, safe, and supportive housing for people with disabilities.Keywords: achondroplasia, autism spectrum disorder, disability, down syndrome, wheelchair user
Procedia PDF Downloads 107847 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 223846 Chemical and Mineralogical Properties of Soils from an Arid Region of Misurata-Libya: Treated Wastewater Irrigation Impacts
Authors: Khalifa Alatresh, Mirac Aydin
Abstract:
This research explores the impacts of irrigation by treated wastewater (TWW) on the mineralogical and chemical attributes of sandy calcareous soils in the Southern region of Misurata. Soil samples obtained from three horizons (A, B, and C) of six TWW-irrigated pedons (29years) and six other pedons from nearby non-irrigated areas (dry-control). The results demonstrated that the TWW-irrigated pedons had significantly higher salinity (EC), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), cation exchange capacity (CEC), available phosphor (AP), total nitrogen (TN), and organic matter (OM) relative to the control pedons. Nonetheless, all the values of interest (EC < 4000 µs/cm < SAR < 13, pH < 8.5 and ESP < 15) remained lower than the thresholds, showing no issues with sodicity or salinity. Irrigated pedons contained significantly higher amounts of total clay and showed an altered distribution of particle sizes and minerals identified (quartz, calcite, microcline, albite, anorthite, and dolomite) within the profile. The observed results included the occurrence of Margarite, Anorthite, Chabazite, and Tridymite minerals after the application of TWW in small quantities that are not enough to influence soil genesis and classification.0,51 cm.Keywords: treated wastewater, sandy calcareous soils, soil mineralogy, and chemistry
Procedia PDF Downloads 114845 Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions
Authors: B. Raghu, Shashi Vemuri, Ch. Sreenivasa Rao
Abstract:
The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination.Keywords: open field, pesticide usage, polyhouses, residues survey
Procedia PDF Downloads 468844 Methodology for Assessing Spatial Equity of Urban Green Space
Authors: Asna Anchalan, Anjana Bhagyanathan
Abstract:
Urban green space plays an important role in providing health (physical and mental well-being), economic, and environmental benefits for urban residents and neighborhoods. Ensuring equitable distribution of urban green space is vital to ensure equal access to these benefits. This study is developing a methodology for assessing spatial equity of urban green spaces in the Indian context. Through a systematic literature review, the research trends, parameters, data, and tools being used are identified. After 2020, the research in this domain is increasing rapidly, where COVID-19 acted as a catalyst. Indian documents use various terminologies, definitions, and classifications of urban green spaces. The terminology, definition, and classification for this study are done after reviewing several Indian documents, master plans, and research papers. Parameters identified for assessing spatial equity are availability, proximity, accessibility, and socio-economic disparity. Criteria for evaluating each parameter were identified from diverse research papers. There is a research gap identified as a comprehensive approach encompassing all four parameters. The outcome of this study led to the development of a methodology that addresses the gaps, providing a practical tool applicable across diverse Indian cities.Keywords: urban green space, spatial equity, accessibility, proximity, methodology
Procedia PDF Downloads 57843 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya
Authors: Jonny Beirne
Abstract:
Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development
Procedia PDF Downloads 381842 Reactive Power Control with Plug-In Electric Vehicles
Authors: Mostafa Dastori, Sirus Mohammadi
Abstract:
While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid
Procedia PDF Downloads 343841 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris
Authors: Suhani Srivastava
Abstract:
This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa
Procedia PDF Downloads 20840 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 74839 An Overview of Onshore and Offshore Wind Turbines
Authors: Mohammad Borhani, Afshin Danehkar
Abstract:
With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy
Procedia PDF Downloads 116838 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.Keywords: bi-lingual, children who stutter, children with language impairment, hidden markov models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies
Procedia PDF Downloads 217837 A Review of Antimicrobial Strategy for Cotton Textile
Abstract:
Cotton textile has large specific surfaces with good adhesion and water-storage properties which provide conditions for the growth and settlement of biological organisms. In addition, the soil, dust and solutes from sweat can also be the sources of nutrients for microorganisms [236]. Generally speaking, algae can grow on textiles under very moist conditions, providing nutrients for fungi and bacteria growth. Fungi cause multiple problems to textiles including discolouration, coloured stains and fibre damage. Bacteria can damage fibre and cause unpleasant odours with a slick and slimy feel. In addition, microbes can disrupt the manufacturing processes such as textile dyeing, printing and finishing operations through the reduction of viscosity, fermentation and mold formation. Therefore, a large demand exists for the anti-microbially finished textiles capable of avoiding or limiting microbial fibre degradation or bio fouling, bacterial incidence, odour generation and spreading or transfer of pathogens. In this review, the main strategy for cotton textile will be reviewed. In the beginning, the classification of bacteria and germs which are commonly found with cotton textiles will be introduced. The chemistry of antimicrobial finishing will be discussed. In addition, the types of antimicrobial treatment will be summarized. Finally, the application and evaluation of antimicrobial treatment on cotton textile will be discussed.Keywords: antimicrobial, cotton, textile, review
Procedia PDF Downloads 365836 Male Versatile Sexual Offenders in Taiwan
Authors: Huang Yueh Chen, Sheng Ang Shen
Abstract:
Purpose: Sexual assault has always been a highly anticipated crime in Taiwan. People assume that the career of sexual offenders tends to be highly specialized. This study hopes to analyze the crime career and risk factors of offenders by means of another classification. Methods: A total of 145 sexual offenders were sentenced on the parole or expiration date from 2009 to 2011, through analysis of official existing documents such as ‘Re-infringement risk assessment report’ and ‘case assessment report’. Results: The section ‘Various Types of Crimes ‘ of criminal career is analyzed. The highest number of ‘ versatile sexual offender’ followed by ‘adult sexual offender’ is about 2.5, representing more than 1.5 kinds of non-sex crimes besides sexual crimes. Different specialized sexual offenders have had extensive experience in the ‘Sexual Assault Experiences in Children and School’, ‘Static 99 Levels’, ‘Pre-Commuted Substance Use’, ‘Excited Deviant Sexual Behavior’, ‘Various Types of Crimes,’ and ‘Sexual Crime in Forerunner’ , ‘Type of Index Crime’ and other projects to achieve significant differences. Conclusions: Resources continue to be devoted to specialized offenders, the character of first-time sexual offender depends on further research and makes the public aware of the different assumptions of diversified offenders from traditional professional offenses that reduce unnecessary panic in society.Keywords: versatile sexual offender, specialized sexual offender, criminal career, risk factor
Procedia PDF Downloads 166835 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 11834 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 122833 Food and Feeding Habit of Clarias anguillaris in Tagwai Reservoir, Minna, Niger State, Nigeria
Authors: B. U. Ibrahim, A. Okafor
Abstract:
Sixty-two (62) samples of Clarias anguillaris were collected from Tagwai Reservoir and used for the study. 29 male and 33 female samples were obtained for the study. Body measurement indicated that different sizes were collected for the study. Males, females and combined sexes had standard length and total length means of 26.56±4.99 and 31.13±6.43, 27.17±5.21 and 30.62±5.43, 26.88±5.08 and 30.86±5.88 cm, respectively. The weights of males, females and combined sexes have mean weights of 241.10±96.27, 225.75±78.66 and 232.93±86.95 gm, respectively. Eight items; fish, insects, plant materials, sand grains, crustaceans, algae, detritus and unidentified items were eaten as food by Clarias anguilarias in Tagwai Reservoir. Frequency of occurrence and numerical methods used in stomach contents analysis indicated that fish was the highest, followed by insect, while the lowest was the algae. Frequency of stomach fullness of Clarias anguillaris showed low percentage of empty stomachs or stomachs without food (21.00%) and high percentage of stomachs with food (79.00%), which showed high abundance of food and high feeding intensity during the period of study. Classification of fish based on feeding habits showed that Clarias anguillaris in this study is an omnivore because it consumed both plant and animal materials.Keywords: stomach content, feeding habit, Clarias anguillaris, Tagwai Reservoir
Procedia PDF Downloads 597832 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India
Authors: Amritee Bora, B. S. Mipun
Abstract:
Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability
Procedia PDF Downloads 166831 Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu
Authors: R. Rajeswari
Abstract:
An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively.Keywords: agro climatic zones, benchmark soil, land use, soil organic carbon
Procedia PDF Downloads 95830 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress
Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher
Abstract:
Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.Keywords: green roof, plant cover, plant drought stress, rainfall retention
Procedia PDF Downloads 115829 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement
Authors: Gheida J. Shahrour, Martin J. Russell
Abstract:
The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation
Procedia PDF Downloads 541828 Price Heterogeneity in Establishing Real Estate Composite Price Index as Underlying Asset for Property Derivatives in Russia
Authors: Andrey Matyukhin
Abstract:
Russian official statistics have been showing a steady decline in residential real estate prices for several consecutive years. Price risk in real estate markets is thus affecting various groups of economic agents, namely, individuals, construction companies and financial institutions. Potential use of property derivatives might help mitigate adverse consequences of negative price dynamics. Unless a sustainable price indicator is developed, settlement of such instruments imposes constraints on counterparties involved while imposing restrictions on real estate market development. The study addresses geographical and classification heterogeneity in real estate prices by means of variance analysis in various groups of real estate properties. In conclusion, we determine optimal sample structure of representative real estate assets with sufficient level of price homogeneity. The composite price indicator based on the sample would have a higher level of robustness and reliability and hence improving liquidity in the market for property derivatives through underlying standardization. Unlike the majority of existing real estate price indices, calculated on country-wide basis, the optimal indices for Russian market shall be constructed on the city-level.Keywords: price homogeneity, property derivatives, real estate price index, real estate price risk
Procedia PDF Downloads 307827 New Evaluation of the Richness of Cactus (Opuntia) in Active Biomolecules and their Use in Agri-Food, Cosmetic, and Pharmaceutical
Authors: Lazhar Zourgui
Abstract:
Opuntia species are used as local medicinal interventions for chronic diseases and as food sources, mainly because they possess nutritional properties and biological activities. Opuntia ficus-indica (L.) Mill, commonly known as prickly pear or nopal cactus, is the most economically valuable plant in the Cactaceae family worldwide. It is a tropical or subtropical plant native to tropical and subtropical America, which can grow in arid and semi-arid climates. It belongs to the family of angiosperms dicotyledons Cactaceae of which about 1500 species of cacti are known. The Opuntia plant is distributed throughout the world and has great economic potential. There are differences in the phytochemical composition of Opuntia species between wild and domesticated species and within the same species. It is an interesting source of plant bioactive compounds. Bioactive compounds are compounds with nutritional benefits and are generally classified into phenolic and non-phenolic compounds and pigments. Opuntia species are able to grow in almost all climates, for example, arid, temperate, and tropical climates, and their bioactive compound profiles change depending on the species, cultivar, and climatic conditions. Therefore, there is an opportunity for the discovery of new compounds from different Opuntia cultivars. Health benefits of prickly pear are widely demonstrated: There is ample evidence of the health benefits of consuming prickly pear due to its source of nutrients and vitamins and its antioxidant properties due to its content of bioactive compounds. In addition, prickly pear is used in the treatment of hyperglycemia and high cholesterol levels, and its consumption is linked to a lower incidence of coronary heart disease and certain types of cancer. It may be effective in insulin-independent type 2 diabetes mellitus. Opuntia ficus-Indica seed oil has shown potent antioxidant and prophylactic effects. Industrial applications of these bioactive compounds are increasing. In addition to their application in the pharmaceutical industries, bioactive compounds are used in the food industry for the production of nutraceuticals and new food formulations (juices, drinks, jams, sweeteners). In my lecture, I will review in a comprehensive way the phytochemical, nutritional, and bioactive compound composition of the different aerial and underground parts of Opuntia species. The biological activities and applications of Opuntia compounds are also discussed.Keywords: medicinal plants, cactus, Opuntia, actives biomolecules, biological activities
Procedia PDF Downloads 105826 An Analysis of the Recent Flood Scenario (2017) of the Southern Districts of the State of West Bengal, India
Authors: Soumita Banerjee
Abstract:
The State of West Bengal is mostly watered by innumerable rivers, and they are different in nature in both the northern and the southern part of the state. The southern part of West Bengal is mainly drained with the river Bhagirathi-Hooghly, and its major distributaries and tributaries have divided this major river basin into many subparts like the Ichamati-Bidyadhari, Pagla-Bansloi, Mayurakshi-Babla, Ajay, Damodar, Kangsabati Sub-basin to name a few. These rivers basically drain the Districts of Bankura, Burdwan, Hooghly, Nadia and Purulia, Birbhum, Midnapore, Murshidabad, North 24-Parganas, Kolkata, Howrah and South 24-Parganas. West Bengal has a huge number of flood-prone blocks in the southern part of the state of West Bengal, the responsible factors for flood situation are the shape and size of the catchment area, its steep gradient starting from plateau to flat terrain, the river bank erosion and its siltation, tidal condition especially in the lower Ganga Basin and very low maintenance of the embankments which are mostly used as communication links. Along with these factors, DVC (Damodar Valley Corporation) plays an important role in the generation (with the release of water) and controlling the flood situation. This year the whole Gangetic West Bengal is being flooded due to high intensity and long duration rainfall, and the release of water from the Durgapur Barrage As most of the rivers are interstate in nature at times floods also take place with release of water from the dams of the neighbouring states like Jharkhand. Other than Embankments, there is no such structural measures for combatting flood in West Bengal. This paper tries to analyse the reasons behind the flood situation this year especially with the help of climatic data collected from the Indian Metrological Department, flood related data from the Irrigation and Waterways Department, West Bengal and GPM (General Precipitation Measurement) data for rainfall analysis. Based on the threshold value derived from the calculation of the past available flood data, it is possible to predict the flood events which may occur in the near future and with the help of social media it can be spread out within a very short span of time to aware the mass. On a larger or a governmental scale, heightening the settlements situated on the either banks of the river can yield a better result than building up embankments.Keywords: dam failure, embankments, flood, rainfall
Procedia PDF Downloads 224825 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 153824 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems
Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas
Abstract:
Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting
Procedia PDF Downloads 116