Search results for: spectroscopy data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 43205

Search results for: spectroscopy data analysis

41225 Assessment of Green Dendritic Hyperbranched Nanocomposites Viscosity Index Improvers in One Pot Step

Authors: Rasha S. Kamal, Reham I. El-Shazly, Reem K. Farag

Abstract:

Green nano-branched structural compounds were synthesized by adding 1% by weight of clay nanoparticle to different moles ratios of either dodecyl acrylate or triethylenetetramine using a simple one-pot method. The synthesized nano polymers were provided with different terminations. In order to confirm the chemical structure of the produced nanocomposites, FTIR and 1HNMR spectroscopy were performed. Additionally, Dynamic Light Scattering (DLS) analysis was used to assess the size and dispersion of the produced branching nano polymers. Using a Gel-permeation chromatograph, the molecular weights of the produced modified green nano hyperbranched polymer with various terminations were determined. the prepared nano samples with different molar feed ratios dodecyl acrylate: triethylenetetramine (DDA: TETA) was designed as An, Bn, Cn, Dn and En. Moreover, the synthesized compounds are expressed as viscosity index improvers (VII); The VI rises when prepared additive concentrations in the solution improve, as does the VI as prepared hyperbranched polymers' triethylenetetramine content rises, and the most effective VI is (E). All of the synthesized green hyperbranched nanocomposites have Newtonian rheological behavior as their rheological behavior.

Keywords: green hyperbranched polymer, DLS, viscosity index improver, Michael addition, nano clay

Procedia PDF Downloads 124
41224 An Analysis of the Influence of Employee Readiness for Change on TQM Implementation

Authors: Mohamed Haffar, Khalil Al-Hyari, Mohammed Khair Abu Zaid, Ramadane Djbarni, Mohammed Hamdan

Abstract:

While employee readiness for change (ERFC) is recognised as critical for total quality management (TQM) implementation, there is a lack of systematic and empirical studies regarding the relationship between ERFC dimensions and TQM. Therefore, this study proposes to fill this gap by providing empirical evidence leading to advancement in the understanding of the influences of ERFC components on TQM implementation. The empirical data for this study was drawn from a survey of 400 middle and senior managers of Jordanian firms. The analysis of the collected data, which was conducted using Structural Equation Modeling technique, revealed that three of the ERFC components, namely personally beneficial, change self-efficacy and management support are the most supportive ERFC dimensions for TQM implementation. Therefore, this paper makes a novel contribution by providing a refined and deeper comprehension of the relationships between ERFCs and TQM implementation.

Keywords: total quality management, employee readiness for change, manufacturing organisations, Jordan

Procedia PDF Downloads 559
41223 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature

Authors: Shao Qi

Abstract:

The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.

Keywords: research trends, visual analysis, habitat creation, ecological restoration

Procedia PDF Downloads 61
41222 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach

Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip

Abstract:

The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.

Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method

Procedia PDF Downloads 129
41221 Biophysical and Structural Characterization of Transcription Factor Rv0047c of Mycobacterium Tuberculosis H37Rv

Authors: Md. Samsuddin Ansari, Ashish Arora

Abstract:

Every year 10 million people fall ill with one of the oldest diseases known as tuberculosis, caused by Mycobacterium tuberculosis. The success of M. tuberculosis as a pathogen is because of its ability to persist in host tissues. Multidrug resistance (MDR) mycobacteria cases increase every day, which is associated with efflux pumps controlled at the level of transcription. The transcription regulators of MDR transporters in bacteria belong to one of the following four regulatory protein families: AraC, MarR, MerR, and TetR. Phenolic acid decarboxylase repressor (PadR), like a family of transcription regulators, is closely related to the MarR family. Phenolic acid decarboxylase repressor (PadR) was first identified as a transcription factor involved in the regulation of phenolic acid stress response in various microorganisms (including Mycobacterium tuberculosis H37Rv). Recently research has shown that the PadR family transcription factors are global, multifunction transcription regulators. Rv0047c is a PadR subfamily-1 protein. We are exploring the biophysical and structural characterization of Rv0047c. The Rv0047 gene was amplified by PCR using the primers containing EcoRI and HindIII restriction enzyme sites cloned in pET-NH6 vector and overexpressed in DH5α and BL21 (λDE3) cells of E. coli following purification with Ni2+-NTA column and size exclusion chromatography. We did DSC to know the thermal stability; the Tm (transition temperature) of protein is 55.29ºC, and ΔH (enthalpy change) of 6.92 kcal/mol. Circular dichroism to know the secondary structure and conformation and fluorescence spectroscopy for tertiary structure study of protein. To understand the effect of pH on the structure, function, and stability of Rv0047c we employed spectroscopy techniques such as circular dichroism, fluorescence, and absorbance measurements in a wide range of pH (from pH-2.0 to pH-12). At low and high pH, it shows drastic changes in the secondary and tertiary structure of the protein. EMSA studies showed the specific binding of Rv0047c with its own 30-bp promoter region. To determine the effect of complex formation on the secondary structure of Rv0047c, we examined the CD spectra of the complex of Rv0047c with promoter DNA of rv0047. The functional role of Rv0047c was characterized by over-expressing the Rv0047c gene under the control of hsp60 promoter in Mycobacterium tuberculosis H37Rv. We have predicted the three-dimensional structure of Rv0047c using the Swiss Model and Modeller, with validity checked by the Ramachandra plot. We did molecular docking of Rv0047c with dnaA, through PatchDock following refinement through FireDock. Through this, it is possible to easily identify the binding hot-stop of the receptor molecule with that of the ligand, the nature of the interface itself, and the conformational change undergone by the protein pattern. We are using X-crystallography to unravel the structure of Rv0047c. Overall the studies show that Rv0047c may have transcription regulation along with providing an insight into the activity of Rv0047c in the pH range of subcellular environment and helps to understand the protein-protein interaction, a novel target to kill dormant bacteria and potential strategy for tuberculosis control.

Keywords: mycobacterium tuberculosis, phenolic acid decarboxylase repressor, Rv0047c, Circular dichroism, fluorescence spectroscopy, docking, protein-protein interaction

Procedia PDF Downloads 121
41220 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 227
41219 Diversity and Equality in Four Finnish and Italian Energy Companies' Open Access Material

Authors: Elisa Bertagna

Abstract:

A frame analysis of the work done by various energy multinational companies concerning diversity issues and gender equality is presented. Documents of four multinational companies - two from Finland and two from Italy - have been studied. The array of companies’ documents includes data from their websites, policies and so on. The Finnish and Italian contexts have been chosen as a sample of North and South Europe, of 'advanced' and 'less advanced'. The aim of the analysis is to understand if and how human resource and diversity management in Finnish and Italian multinational energy companies communicate their activity towards the employees. Attention is given on how employees are reacting in their role and on the consequences of its social positioning. The findings of this essay are crucially important. They show how the companies in object tend to focus on the HR and DM positive actions towards female employees’ struggles since the industry is characterized by multinationals with male-dominated employees. In this way, other categories, which are also depicted as sensitive such as young and elderly people or foreigners, do not receive the same amount of attention. Consequently, power hierarchies can be found: 'women' as a social category are given more importance and space in the companies’ data than others. Consequently, the present work analysis reflects on possible struggles that such companies might be facing concerning gender biases and further diverse issues.

Keywords: energy, diversity, gender, multinationals, power hierarchies

Procedia PDF Downloads 143
41218 Performance Analysis of the First-Order Characteristics of Polling System Based on Parallel Limited (K=1) Services Mode

Authors: Liu Yi, Bao Liyong

Abstract:

Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.

Keywords: polling, parallel scheduling, mean queue length, average cycle time

Procedia PDF Downloads 39
41217 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 201
41216 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 372
41215 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 230
41214 Ancient Egyptian Industry Technology of Canopic Jars, Analytical Study and Conservation Processes of Limestone Canopic Jar

Authors: Abd El Rahman Mohamed

Abstract:

Canopic jars made by the ancient Egyptians from different materials were used to preserve the viscera during the mummification process. The canopic jar studied here dates back to the Late Period (712-332 BC). It is found in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar was carved from limestone and covered with a monkey head lid with painted eyes and ears with red pigment and surrounded with black pigment. The jar contains bandages of textile containing mummy viscera with resin and black resin blocks. The canopic jars were made using the sculpting tools that were used by the ancient Egyptians, such as metal chisels (made of copper) and hammers and emptying the mass of the jar from the inside using a tool invented by the ancient Egyptians, which called the emptying drill. This study also aims to use analytical techniques to identify the components of the jar, its contents, pigments, and previous restoration materials and to understand its deterioration aspects. Visual assessment, isolation and identification of fungi, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used in our study. The jar showed different signs of deterioration, such as dust, dirt, stains, scratches, classifications, missing parts, and breaks; previous conservation materials include using iron wire, completion mortar and an adhesive for assembly. The results revealed that the jar was carved from Dolomite Limestone, red Hematite pigment, Mastic resin, and Linen textile bandages. The previous adhesive was Animal Glue and used Gypsum for the previous completion. The most dominant Microbial infection on the jar was found in the fungi of (Penicillium waksmanii), (Nigrospora sphaerica), (Actinomycetes sp) and (Spore-Forming Gram-Positive Bacilli). Conservation procedures have been applied with high accuracy to conserve the jar, including mechanical and chemical cleaning, re-assembling, completion and consolidation.

Keywords: Canopic jar, Consolidation, Mummification, Resin, Viscera.

Procedia PDF Downloads 72
41213 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths

Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang

Abstract:

In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.

Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday

Procedia PDF Downloads 250
41212 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 78
41211 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 314
41210 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 141
41209 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 190
41208 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 349
41207 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
41206 Effects of Boiling Temperature and Time on Colour, Texture and Sensory Properties of Volutharpa ampullacea perryi Meat

Authors: Xianbao Sun, Jinlong Zhao, Shudong He, Jing Li

Abstract:

Volutharpa ampullacea perryi is a high-protein marine shellfish. However, few data are available on the effects of boiling temperatures and time on quality of the meat. In this study, colour, texture and sensory characteristics of Volutharpa ampullacea perryi meat during the boiling cooking processes (75-100 °C, 5-60 min) were investigated by colors analysis, texture profile analysis (TPA), scanning electron microscope (SEM) and sensory evaluation. The ratio of cooking loss gradually increased with the increase of temperature and time. The colour of meat became lighter and more yellower from 85 °C to 95 °C in a short time (5-20 min), but it became brown after a 30 min treatment. TPA results showed that the Volutharpa ampullacea perryi meat were more firm and less cohesive after a higher temperature (95-100 °C) treatment even in a short period (5-15 min). Based on the SEM analysis, it was easily found that the myofibrils structure was destroyed at a higher temperature (85-100 °C). Sensory data revealed that the meat cooked at 85-90 °C in 10-20 min showed higher scores in overall acceptance, as well as color, hardness and taste. Based on these results, it could be constructed that Volutharpa ampullacea perryi meat should be heated on a suitable condition (such as 85 °C 15 min or 90 °C 10 min) in the boiling cooking to be ensure a better acceptability.

Keywords: Volutharpa ampullacea perryi meat, boiling cooking, colour, sensory, texture

Procedia PDF Downloads 281
41205 Modelling Consistency and Change of Social Attitudes in 7 Years of Longitudinal Data

Authors: Paul Campbell, Nicholas Biddle

Abstract:

There is a complex, endogenous relationship between individual circumstances, attitudes, and behaviour. This study uses longitudinal panel data to assess changes in social and political attitudes over a 7-year period. Attitudes are captured with the question 'what is the most important issue facing Australia today', collected at multiple time points in a longitudinal survey of 2200 Australians. Consistency of attitudes, and factors predicting change over time, are assessed. The consistency of responses has methodological implications for data collection, specifically how often such questions ought to be asked of a population. When change in attitude is observed, this study assesses the extent to which individual demographic characteristics, personality traits, and broader societal events predict change.

Keywords: attitudes, longitudinal survey analysis, personality, social values

Procedia PDF Downloads 133
41204 Behavioral Response of Bee Farmers to Climate Change in South East, Nigeria

Authors: Jude A. Mbanasor, Chigozirim N. Onwusiribe

Abstract:

The enigma climate change is no longer an illusion but a reality. In the recent years, the Nigeria climate has changed and the changes are shown by the changing patterns of rainfall, the sunshine, increasing level carbon and nitrous emission as well as deforestation. This study analyzed the behavioural response of bee keepers to variations in the climate and the adaptation techniques developed in response to the climate variation. Beekeeping is a viable economic activity for the alleviation of poverty as the products include honey, wax, pollen, propolis, royal jelly, venom, queens, bees and their larvae and are all marketable. The study adopted the multistage sampling technique to select 120 beekeepers from the five states of Southeast Nigeria. Well-structured questionnaires and focus group discussions were adopted to collect the required data. Statistical tools like the Principal component analysis, data envelopment models, graphs, and charts were used for the data analysis. Changing patterns of rainfall and sunshine with the increasing rate of deforestation had a negative effect on the habitat of the bees. The bee keepers have adopted the Kenya Top bar and Langstroth hives and they establish the bee hives on fallow farmland close to the cultivated communal farms with more flowering crops.

Keywords: climate, farmer, response, smart

Procedia PDF Downloads 133
41203 Improving Road Infrastructure Safety Management Through Statistical Analysis of Road Accident Data. Case Study: Streets in Bucharest

Authors: Dimitriu Corneliu-Ioan, Gheorghe FrațIlă

Abstract:

Romania has one of the highest rates of road deaths among European Union Member States, and there is a concern that the country will not meet its goal of "zero deaths" by 2050. The European Union also aims to halve the number of people seriously injured in road accidents by 2030. Therefore, there is a need to improve road infrastructure safety management in Romania. The aim of this study is to analyze road accident data through statistical methods to assess the current state of road infrastructure safety in Bucharest. The study also aims to identify trends and make forecasts regarding serious road accidents and their consequences. The objective is to provide insights that can help prioritize measures to increase road safety, particularly in urban areas. The research utilizes statistical analysis methods, including exploratory analysis and descriptive statistics. Databases from the Traffic Police and the Romanian Road Authority are analyzed using Excel. Road risks are compared with the main causes of road accidents to identify correlations. The study emphasizes the need for better quality and more diverse collection of road accident data for effective analysis in the field of road infrastructure engineering. The research findings highlight the importance of prioritizing measures to improve road safety in urban areas, where serious accidents and their consequences are more frequent. There is a correlation between the measures ordered by road safety auditors and the main causes of serious accidents in Bucharest. The study also reveals the significant social costs of road accidents, amounting to approximately 3% of GDP, emphasizing the need for collaboration between local and central administrations in allocating resources for road safety. This research contributes to a clearer understanding of the current road infrastructure safety situation in Romania. The findings provide critical insights that can aid decision-makers in allocating resources efficiently and institutionally cooperating to achieve sustainable road safety. The data used for this study are collected from the Traffic Police and the Romanian Road Authority. The data processing involves exploratory analysis and descriptive statistics using the Excel tool. The analysis allows for a better understanding of the factors contributing to the current road safety situation and helps inform managerial decisions to eliminate or reduce road risks. The study addresses the state of road infrastructure safety in Bucharest and analyzes the trends and forecasts regarding serious road accidents and their consequences. It studies the correlation between road safety measures and the main causes of serious accidents. To improve road safety, cooperation between local and central administrations towards joint financial efforts is important. This research highlights the need for statistical data processing methods to substantiate managerial decisions in road infrastructure management. It emphasizes the importance of improving the quality and diversity of road accident data collection. The research findings provide a critical perspective on the current road safety situation in Romania and offer insights to identify appropriate solutions to reduce the number of serious road accidents in the future.

Keywords: road death rate, strategic objective, serious road accidents, road safety, statistical analysis

Procedia PDF Downloads 85
41202 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis

Authors: Arin Ghazarian, Cyril Rakovski

Abstract:

Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter called

Keywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases

Procedia PDF Downloads 153
41201 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 575
41200 The Utilization of Big Data in Knowledge Management Creation

Authors: Daniel Brian Thompson, Subarmaniam Kannan

Abstract:

The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.

Keywords: big data, knowledge management, data driven, knowledge creation

Procedia PDF Downloads 116
41199 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools

Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson

Abstract:

Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.

Keywords: BIM, data exchange, interoperability issues, lighting simulations

Procedia PDF Downloads 242
41198 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis

Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho

Abstract:

Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.

Keywords: land use, SNS, text mining, urban regeneration

Procedia PDF Downloads 293
41197 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya

Authors: Masese Chuma Benard, Martin Onsiro Ronald

Abstract:

Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.

Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)

Procedia PDF Downloads 85
41196 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 80