Search results for: player performance prediction
12686 Accurately Measuring Stress Using Latest Breathing Technology and Its Relationship with Academic Performance
Authors: Farshid Marbouti, Jale Ulas, Julia Thompson
Abstract:
The main sources of stress among college students are: changes in sleeping and eating habits, undertaking new responsibilities, and financial difficulties as the most common sources of stress, exams, meeting new people, career decisions, fear of failure, and pressure from parents, transition to university especially if it requires leaving home, working with people that they do not know, trouble with parents, and relationship with the opposite sex. The students use a variety of stress coping strategies, including talking to family and friends, leisure activities and exercising. The Yerkes–Dodson law indicates while a moderate amount of stress may be beneficial for performance, too high stress will result in weak performance. In other words, if students are too stressed, they are likely to have low academic performance. In a preliminary study conducted in 2017 with engineering students enrolled in three high failure rate classes, the majority of the students stated that they have high levels of stress mainly for academic, financial, or family-related reasons. As the second stage of the study, the main purpose of this research is to investigate the students’ level of stress, sources of stress, their relationship with student demographic background, students’ coping strategies, and academic performance. A device is being developed to gather data from students breathing patterns and measure their stress levels. In addition, all participants are asked to fill out a survey. The survey under development has the following categories: exam stressor, study-related stressors, financial pressures, transition to university, family-related stress, student response to stress, and stress management. After the data collection, Structural Equation Modeling (SEM) analysis will be conducted in order to identify the relationship among students’ level of stress, coping strategies, and academic performance.Keywords: college student stress, coping strategies, academic performance, measuring stress
Procedia PDF Downloads 10412685 Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture
Authors: Aung Phyo Kyaw, Kuo Chieh Chao
Abstract:
Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards.Keywords: expansive soil, swelling pressure, total heave, treatment depth
Procedia PDF Downloads 8512684 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation
Authors: Kyoung Hoon Kim
Abstract:
A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance
Procedia PDF Downloads 30112683 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison
Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir
Abstract:
Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity
Procedia PDF Downloads 9112682 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement
Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee
Abstract:
The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation
Procedia PDF Downloads 27012681 Academic Performance of Adolescents Living with Single Parent Families
Authors: Akbar Ali
Abstract:
The aim of this study is to explore the academic performance of adolescents who are living with their single parents. Living with single parents is challenging experience especially when children are in adolescence phase. The core aim of study was to investigate how family environment, social status and parental support affect adolescents’ academic performance. This study is carried out in Punjab, Pakistan on adolescents who are experiencing the single family environment either my divorce or natural parental marital transition. Qualitative methodology was employed to evaluate the different aspects of aspects of academic performance. A sample of 40 students in-between age 14 to 18 years was selected from different institutions coming from different socio cultural backgrounds and having different family situations comprising different types of single family structure. Data was collected through semi structured interviews to explore the academics performance and family dynamics. Findings of the study indicated that adolescents living with single parents show poor academic performance due to lack of interest, absentees, poor social and economic support, less parental involvement. Students were showing less or no interest in extracurricular activities and less social interaction with fellows. Parental economic status , Parenting style, parental involvement and academic support are the key factors which directly academic outcomes. Research experience was challenging because students were reluctant to share family issues. Proper academic and counselling centre should be established to provide emotional and academic counselling for such students. Longitudinal research should be carried out to trace the academic outcomes and social adjustments.Keywords: academic counselling, marital transitions, parenting style, parental involvement
Procedia PDF Downloads 1112680 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance
Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao
Abstract:
Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient
Procedia PDF Downloads 13312679 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 13012678 Business Constraints and Growth Potential of Smes: Case Study of Electrical Industry in Pakistan
Authors: Muhammad Waseem Akram
Abstract:
The current study attempts to analyze the impact of business constraints on the growth potential and performance of Small and Medium Enterprises (SMEs) in the electrical industry of Pakistan. Primary data have been utilized for the study collected from the electrical industry cluster in Sargodha, Pakistan. OLS regression is used to assess the impact of business constraints on the performance of SMEs by controlling the effect of Technology Level, Innovations, and Firm Size. To associate business constraints with the growth potential of SMEs, the study utilized Tetrachoric Correlation and Logistic Regression. Findings reveal that all the business constraints negatively affect the performance of SMEs in the electrical industry except Political Instability. Results of Tetrachoric Correlation show that all the business constraints are negatively correlated with the growth potential of SMEs. Logistic Regression results show that Energy Constraint, Inflation and Price Instability, and Bad Business Practices, all three business constraints cause to reduce the probability of income growth in sample SMEs.Keywords: SMEs, business constraints, performance, growth potential
Procedia PDF Downloads 16912677 Farmer-Participatory Variety Trials for Tomato and Chili Pepper in East Java
Authors: Hanik Anggraeni, Evy Latifah, Putu Bagus, Joko Mariyono
Abstract:
This study is to test the adaptation capacity of several selected lines and varieties of chili and tomato in farmers’ lands. Five improved lines and varieties of tomato and chili were selected based on the best performance in previous trials. Two participating farmers managed the trials. Agronomic aspects were used as performance indicators. The results show that several improved lines of tomato and chili performed better than others. However, the performance was dependent on the altitude and season. Lines performed better and high altitude could not do the same in low altitude, and vice versa. This is the same case as different season. Farmers were expected to select the best lines according to the locations.Keywords: variety trials, tomato and chili, participatory farmers, East Java
Procedia PDF Downloads 23412676 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 12012675 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm
Authors: G. Bhushan, S. Dhingra, K. K. Dubey
Abstract:
This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.Keywords: genetic algorithm, rsm, biodiesel, karanja
Procedia PDF Downloads 30612674 Design Optimization and Thermoacoustic Analysis of Pulse Tube Cryocooler Components
Authors: K. Aravinth, C. T. Vignesh
Abstract:
The usage of pulse tube cryocoolers is significantly increased mainly due to the advantage of the absence of moving parts. The underlying idea of this project is to optimize the design of pulse tube, regenerator, a resonator in cryocooler and analyzing the thermo-acoustic oscillations with respect to the design parameters. Computational Fluid Dynamic (CFD) model with time-dependent validation is done to predict its performance. The continuity, momentum, and energy equations are solved for various porous media regions. The effect of changing the geometries and orientation will be validated and investigated in performance. The pressure, temperature and velocity fields in the regenerator and pulse tube are evaluated. This optimized design performance results will be compared with the existing pulse tube cryocooler design. The sinusoidal behavior of cryocooler in acoustic streaming patterns in pulse tube cryocooler will also be evaluated.Keywords: acoustics, cryogenics, design, optimization
Procedia PDF Downloads 17512673 Mechanical Characterization and Durability of Eco-Efficient Ultra High Performance Concrete
Authors: Valeria Corinaldesi, Nicola Generosi, Jacopo Donnini
Abstract:
Ultra high performance concrete (UHPC) is an innovative material which tends to exhibit superior properties such as incredible mechanical and durability performance and non-brittleness behavior. Over the last twenty years, phenomenal advances have taken place in the research and application of UHPC. Recently, the approach is to improve UHPC sustainability by reducing its embodied energy. First of all, this goal can be achieved by reducing Portland cement dosage. In this work, an experimental investigation was carried out to characterize the mechanical behavior and durability of UHPCs prepared by reducing the cement amount by 30% in order to verify the impact of lower cement content and higher water-to-cement ratio on both mechanical performance and durability, if any. Eight different UHPC mixtures were compared, with two different cement dosages (either 1000 or 700 kg) and four different brass-coated steel fibres dosages (0 - 50 - 100 - 150 kg), in terms of 28-day compressive and flexural strengths. Then, the mixtures prepared with the lower cement content were further investigated in terms of abrasion resistance, water absorption, freezing and thawing cycles, and resistance to sulphate attack. Results obtained showed the feasibility of reducing cement dosage without compromising mechanical performance and UHPC's extraordinary durability.Keywords: abrasion resistance, durability, eco-efficiency, freeze-thawing cycles, steel fibres, sulphate exposure, sustainability, UHPC
Procedia PDF Downloads 7612672 Conceptual Design of Unmanned Aerial Targets
Authors: M. Adamski, J. Cwiklak
Abstract:
The contemporary battlefield creates a demand for more costly and highly advanced munitions. Training personnel responsible for operations, as well as an immediate execution of combat tasks, which engage real assets, is unrealistic and economically not feasible. Owing to a wide array of exploited simulators and various types of imitators, it is possible to reduce the costs. One of the effective elements of training, which can be applied in the training of all service branches, are imitators of aerial targets. This research serves as an introduction to the commencement of design analysis over a real aerial target imitator. Within the project, the basic aerodynamic calculations were made, which enabled to determine its geometry, design layout, performance, as well as the mass balance of individual components. The conducted calculations of the parameters of flight characteristics come closer to the real performance of such unmanned aerial vehicles.Keywords: aerial target, aerodynamics, imitator, performance
Procedia PDF Downloads 39812671 Effects of Performance Appraisal on Employee Productivity in Yobe State University, Damaturu, (A Case Study of the Department of Islamic Studies)
Authors: Adam Abdullahi Mohammed
Abstract:
Performance appraisal is an assessment made to ensure the level of a worker’s productivity in a given period of time. The appraisal system is divided into two categories that are traditional methods and modern methods, with emphasis based on the evaluation of work results. In the traditional approach of staff appraisal, which puts more emphasis on individual traits, supervisors are required to measure employees through interactions based on what they achieved with reference to job descriptions, as well as rating them based on questionnaires without staff interaction. These methods are not effective because staff may give biased information. The study will attempt to assess the effect of performance appraisal on employee productivity at Yobe State University, Damaturu. It is aimed at assessing the process, methods, and objectives of performance appraisal and its feedback to know how they affect the success of the appraisal, its results, and employee productivity. In this study, a quantitative research method is adopted in collecting and analyzing data, and a questionnaire will be used as data collecting instrument. As it is a case study, the target population is the staff of the department of Islamic Studies. The research will employ a census sampling technique where all the subjects in the target populations are given a chance to participate in the study. This sampling method was considered because the entire target population is considered researchable. The expected findings are that staff performance appraisal in the department of Islamic Studies has effects on employee productivity; this is to say if it is given due consideration and the needful being done will improve employee productivity.Keywords: performance appraisal, employee productivity, Yobe state University, appraisal feedback
Procedia PDF Downloads 7212670 The Effectiveness of the Counselling Module in Counseling Interventions for Low Performance Employees
Authors: Hazaila Hassan
Abstract:
This research aims and discusses about the effectiveness of the Psynnova i-Behaviour Modification Technique (iBMT) module towards the change in behaviour of low-performing employees. The purpose of the study is to examine the effectiveness of the Psynnova Module on changing behaviour through five factors among low-performing employees in the public sector. The five main factors/constructs were cognitive enhancement and rationality, emotional stability, attitude alignment and adjustment, social skills development and psycho-spirituality enhancement. In this research, 5 main constructs will be using to indicate behaviour changing performance of the employees after attending The Psynnova Program that using this Psynnova IBMT Module. The respondents are among those who have low scores in terms of annual performance through annual performance value reports and have gone through various stages before being required to attend Psynnova Program. Besides that, the research plan was also to critically examine and understand the change in behaviour among the low-performing employees through the five dimensions in the Psynnova Module. A total of 50 respondent will purposively sampled to be the respondents of this research. This study will use the Experimental Method to One Group Purposively Pre and Post Test using the Time Series Design. Experimental SPSS software version 22.0 will be used to analyse this data. Hopefully this research can see the changing of their behaviour in five factors as an indicator to the respondent after attending the Psynnova Programme. Findings from this study are also used to propose to assisting psychologist to see the changes that occurred to the respondents with the best framework of behaviour changing for them.Keywords: five dimension of behaviour changing, among adult, low performance, modul effectiveness
Procedia PDF Downloads 17112669 Measuring the Influence of Functional Proximity on Environmental Urban Performance via IMM: Four Study Cases in Milan
Authors: Massimo Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut
Abstract:
Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.Keywords: built environment, ecology, sustainable indicators, sustainability, urban morphology
Procedia PDF Downloads 16812668 To Study the Performance of FMS under Different Manufacturing Strategies
Authors: Mohammed Ali
Abstract:
A flexible manufacturing system has been studied under different manufacturing strategies. The aim of this paper is to test the impact of number of pallets and routing flexibility (design strategy) on system performance operating at different sequencing and dispatching rules (control strategies) at unbalanced load condition (planning strategies). A computer simulation model is developed to evaluate the effects of aforementioned strategies on the make-span time, which is taken as the system performance measure. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. The result of the simulation shows that there is definite range of pallets for each level of routing flexibility at which the systems performs satisfactorily.Keywords: flexible manufacturing system, manufacturing, strategy, makespan
Procedia PDF Downloads 66812667 Mechanized Harvest Impact on Reproductive Performance of Ewes of Some Villages
Authors: Jaber Jafarzadeh
Abstract:
The two nodes of treatment for the study of indirect effects on the reproductive performance of sheep farming machines used. During the harvest period of 30 days (from 20th July to 20th September) and coincides with the period, sheep are also harvested the following day why the fields and in the second group were 30 ewes and were kept in farms that harvest was done by machinery during harvest about 15-20 days (from 20th July to early September), respectively. -Ya Term mating season is better than the ram up Astafadh Knym- of early September, no matter the point of beginning. Based on the data obtained, it was found that the rate of return to oestrus in the first group is lower than the second group and the rate of lambing in the first group was significantly (0.05> P) is greater than the second group (138% vs. 97%). Estrus synchronization in the first group and the second group was better than that.Keywords: mechanized harvest, twin birth, mating season, reproductive performance of ewes
Procedia PDF Downloads 59812666 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: optimization, material selection, process selection, genetic algorithm
Procedia PDF Downloads 42012665 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 9112664 Assessing the Perceptions toward the Impacts of Tourism in Poverty Alleviation: A Basis for Pro-Poor Tourism Policy in Sta. Lucia, Guimba, Nueva Ecija
Authors: Lady Salvador Purganan, Jojo M. Villamin, Noel L. Lansang
Abstract:
Tourism is a multifaceted but interdependent industry. This industry is composed of four major players, the public sector, the private sector, the local community, and the tourists. Each player has a vital role in the success of delivering high-quality tourism products and activities. There are various manifestations of positive economic outcomes that benefit the local community. Pro-poor tourism development approach has a great potential to serve as an avenue for capacity building leading to economic independence since natural attractions and cultural resources are assets that can be capitalized on, especially by the poor, because it is more accessible to them compared to financial resources. In the National Tourism Development Plan 2016-2022, specific mechanisms are not reflected to combat and lower poverty incidence through tourism. The researcher used the multidimensional poverty theory and sustainable tourism theory to formulate indicators in the research instrument and social exchange theory. The expected output of the study is to unlock opportunities, specifically in Brgy. Sta. Lucia, Guimba, Nueva Ecija, by crafting policies taking into utmost consideration local community involvement and participation in the process of tourism development which is essential in attaining inclusive growth and sustainability. This study will apply the sequential explanatory design mixed-method approach.Keywords: pro-poor tourism, poverty alleviation, livelihood opportunities, tourism development plan
Procedia PDF Downloads 10012663 The Role of Meaningful Work in Transformational Leadership and Work Outcomes Relationship
Authors: Zainur Rahman
Abstract:
Meaningful work is the topic that will be discussed in this article, especially in changing period. It has an important role because by reaching meaningful work, it will drive to be positive in the workplace. Therefore, task performance will be increased and cynicism about organizational change (CAOC) will be reduced. Moreover, it is influenced by situational factor, which is transformational leadership. In this conceptual paper, the author discusses how the construct of meaningful work influenced by transformational leadership that will have impact on the follower’ work outcomes in the organizational change. It is proposed that the construct of meaningful work are susceptible with situational variable. Transformational leaders who are respectful on the process of humanizing the followers affect task performance and reduce CAOC in organizational change.Keywords: transformational leadership, meaningful work, task performance, CAOC
Procedia PDF Downloads 32112662 Post-Covid 19 Pandemic Economy: Corporate Governance and Performance of Private Security Firms in Kenya
Authors: Sewe Silvanus Odhiambo
Abstract:
Globally, many governments have publicly recognized private security firms as essential services providers. The private security firms face a lot of challenges, but the COVID-19 situation also has exacerbated them to another level. This paper locates its relevance in the post-coronavirus era. The COVID-19 pandemic has redefined the world operation, which shows a higher impact on the security field. Accordingly, the purpose of the study was to examine the role of corporate governance on the performance of private security firms in a post-covid pandemic era in Kenya. The study employed a descriptive research design, which included a quantitative approach and secondary data. The study was carried in the month of July 2021 from the registered private security firms. After targeting all private security firms, only 54 firms had disclosed their annual report by the time of conducting the study. The results depicted that pandemic has affected the performance of private security firms measures unfavorably. Further, boards of directors show a positive association with security firm performance. The study recommends that there is need board of directors to enhance management’s risk assessments in the midst of COVID-19; ensure that there are business continuity plans; there is organizational resilience; there is need for the development of new digital strategies; enabling the digital workforce in the firms and have effective communication plans with both internal and external stakeholders to deal with uncertainties and develop more post-COVID practices for boards of directors to improve performance of private security firms in Kenya. The practical implications of the study are that the research outcomes might assist regulatory bodies, investors, policymakers, and the security sector in general in their formulation of public and corporate governance strategies concerning future emergency preparedness and responses. This study also provides a unique contribution to the literature of COVID-19 and security firm performance in emerging economies context.Keywords: COVID-19, corporate governance, firm performance, private security firms
Procedia PDF Downloads 16012661 Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle
Authors: Emiliano Lustrissimi, Bonifacio Bianco, Sebastiano Caravaggi, Antonio Rosato
Abstract:
A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance.Keywords: electric motors, electric vehicles, end-of-production-line test bench, mathematical model, field tests
Procedia PDF Downloads 5112660 Imports of Intermediate Inputs: A Study of the Main Research Streams
Authors: Marta Fernández Olmos, Jorge Fleta, Talia Gómez
Abstract:
This article shares the results of a temporal analysis of the literature on imports of intermediate inputs based on review techniques. The aim of this paper is to identify the main lines of research, their trends, topics, and the research agenda. The internationalization field has attracted considerable scholars and practitioners’ attention in recent years and has grown, rapidly, resulting in a large body of knowledge scattered in different areas of specialization. However, there are no studies that are entirely restricted to imports, intermediate inputs and innovation performance. The performance analysis provided an updated overview of the evolution of the importing literature from 1970 to 2022 and quantitatively identified the most productive and influential journals, articles, authors, and countries. The results show that the current topics are mainly based on modes of importing, innovation performance of importing intermediate imports and collaborations. Future lines of research are identified from topics with lower co-occurrence, such as artificial intelligence, entrepreneurship, and alternative business models such as multinational enterprises (MNEs) versus non-MNEs.Keywords: imports, intermediate inputs, innovation performance, review
Procedia PDF Downloads 7412659 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 5612658 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 34212657 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions
Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei
Abstract:
This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics
Procedia PDF Downloads 84