Search results for: hybrid alkaline cements
269 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation
Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran
Abstract:
In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility
Procedia PDF Downloads 396268 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 150267 Metal-Organic Frameworks for Innovative Functional Textiles
Authors: Hossam E. Emam
Abstract:
Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications
Procedia PDF Downloads 145266 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 74265 Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb
Authors: Ji-Won Park, Jong-Wha Kim
Abstract:
Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences.Keywords: Lilium lancifolium, autotriploid, natural population, genetic distance, 2n female gamete
Procedia PDF Downloads 521264 Effect of Xenobiotic Bioactive Compounds from Grape Waste on Inflammation and Oxidative Stress in Pigs
Authors: Ionelia Taranu, Gina Cecilia Pistol, Mihai Alexandru Gras, Mihai Laurentiu Palade, Mariana Stancu, Veronica Sanda Chedea
Abstract:
In the last decade bioactive compounds from grape waste are investigated as new therapeutic agents for the inhibition of carcinogenesis and other diseases. The objective of this study was to characterize several bioactive compounds (polyphenols and polyunsaturated fatty acids) of a dried grape pomace (GP) derived from a Romanian winery and further to evaluate their effect on inflammation and oxidative markers in liver of pig used as animal model. The total polyphenol concentration of pomace was 36.2g gallic acid equiv /100g. The pomace was rich in polyphenols from the flavonoids group, the main class being flavanols (epicatechins, catechin, epigallocatechin, procyanidins) and antocyanins (Malvidin 3-O-glucoside). The highest concentration was recorded for epicatechin (51.96g/100g) and procyanidin dimer (22.79g/100g). A high concentration of total polyunsaturated fatty acids (PUFA) especially ω-6 fatty acids (59.82 g/100g fat) was found in grape pomace. 20 crossbred TOPIG hybrid fattening pigs were randomly assigned (n = 10) to two experimental treatments: a normal diet (control group) and a diet included 5% grape pomace (GP group) for 24 days. The GP diet lowered the gene expression and protein concentration of IL-1β, IL-8, TNF-α and IFN-γ cytokines in liver suggesting an anti-inflammatory effect of GP diet. Concentration of hepatic TBARS also decreased, but the total antioxidant capacity (liver TEAC) and activity and gene expression of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) did not differ between the GP and control diet. The results showed that GP diet exerted an anti-inflammatory effect, but the 5% dietary inclusion modulated only partially the oxidative stress.Keywords: animal model, inflammation, grape waste, immune organs
Procedia PDF Downloads 339263 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters
Authors: Bekir Turedi
Abstract:
Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.Keywords: perovskite, solar cell, single crystal, diffusion length
Procedia PDF Downloads 52262 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method
Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary
Abstract:
Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method
Procedia PDF Downloads 430261 Geotechnical Challenges for the Use of Sand-sludge Mixtures in Covers for the Rehabilitation of Acid-Generating Mine Sites
Authors: Mamert Mbonimpa, Ousseynou Kanteye, Élysée Tshibangu Ngabu, Rachid Amrou, Abdelkabir Maqsoud, Tikou Belem
Abstract:
The management of mine wastes (waste rocks and tailings) containing sulphide minerals such as pyrite and pyrrhotite represents the main environmental challenge for the mining industry. Indeed, acid mine drainage (AMD) can be generated when these wastes are exposed to water and air. AMD is characterized by low pH and high concentrations of heavy metals, which are toxic to plants, animals, and humans. It affects the quality of the ecosystem through water and soil pollution. Different techniques involving soil materials can be used to control AMD generation, including impermeable covers (compacted clays) and oxygen barriers. The latter group includes covers with capillary barrier effects (CCBE), a multilayered cover that include the moisture retention layer playing the role of an oxygen barrier. Once AMD is produced at a mine site, it must be treated so that the final effluent at the mine site complies with regulations and can be discharged into the environment. Active neutralization with lime is one of the treatment methods used. This treatment produces sludge that is usually stored in sedimentation ponds. Other sludge management alternatives have been examined in recent years, including sludge co-disposal with tailings or waste rocks, disposal in underground mine excavations, and storage in technical landfill sites. Considering the ability of AMD neutralization sludge to maintain an alkaline to neutral pH for decades or even centuries, due to the excess alkalinity induced by residual lime within the sludge, valorization of sludge in specific applications could be an interesting management option. If done efficiently, the reuse of sludge could free up storage ponds and thus reduce the environmental impact. It should be noted that mixtures of sludge and soils could potentially constitute usable materials in CCBE for the rehabilitation of acid-generating mine sites, while sludge alone is not suitable for this purpose. The high sludge water content (up to 300%), even after sedimentation, can, however, constitute a geotechnical challenge. Adding lime to the mixtures can reduce the water content and improve the geotechnical properties. The objective of this paper is to investigate the impact of the sludge content (30, 40 and 50%) in sand-sludge mixtures (SSM) on their hydrogeotechnical properties (compaction, shrinkage behaviour, saturated hydraulic conductivity, and water retention curve). The impact of lime addition (dosages from 2% to 6%) on the moisture content, dry density after compaction and saturated hydraulic conductivity of SSM was also investigated. Results showed that sludge adding to sand significantly improves the saturated hydraulic conductivity and water retention capacity, but the shrinkage increased with sludge content. The dry density after compaction of lime-treated SSM increases with the lime dosage but remains lower than the optimal dry density of the untreated mixtures. The saturated hydraulic conductivity of lime-treated SSM after 24 hours of cure decreases by 3 orders of magnitude. Considering the hydrogeotechnical properties obtained with these mixtures, it would be possible to design CCBE whose moisture retention layer is made of SSM. Physical laboratory models confirmed the performance of such CCBE.Keywords: mine waste, AMD neutralization sludge, sand-sludge mixture, hydrogeotechnical properties, mine site reclamation, CCBE
Procedia PDF Downloads 53260 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor
Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga
Abstract:
Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC
Procedia PDF Downloads 257259 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control
Authors: Sung-Jun Yoo, Kazuhide Ito
Abstract:
In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality
Procedia PDF Downloads 361258 Comparative Study on the Influence of Different Drugs against Aluminium- Induced Nephrotoxicity and Hepatotoxicity in Rats
Authors: Azza A. Ali, Toqa M. Elnahhas, Abeer I. Abd El-Fattah, Mona M. Kamal, Karema Abu-Elfotuh
Abstract:
Background: Environmental pollution with the different aluminium (Al) containing compounds especially those in industrial waste water exposes people to higher than normal levels of Al that represents an environmental risk factor. Cosmetics, Al ware, and containers are also sources of Al besides some foods and food additives. In addition to its known neurotoxicity, Al affects other body structures like skeletal system, blood cells, liver and kidney. Accumulation of Al in kidney and liver induces nephrotoxicity and hepatotoxicity. Coenzyme Q10 (CoQ10) is a pseudo-vitamin substance primarily present in the mitochondria. It is a powerful antioxidant and acts as radical scavenger. Wheat grass is a natural product that contains carbohydrates, proteins, vitamins, minerals, enzymes and has antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Cocoa is an excellent source of iron, potent antioxidants and can protect against many diseases. Vinpocetine is an antioxidant and anti inflammatory while zinc is an essential trace element involved in cell division and its deficiency is observed in many types of liver disease. Objective: To evaluate and compare the potency of different drugs (CoQ10, wheatgrass, cocoa, vinpocetine and zinc) against nephro- and hepato-toxicity induced by Al in rats. Methods: Rats were divided to seven groups and received daily for three weeks either saline for control group or AlCl3 (70 mg/kg, IP) for Al-toxicity model groups. Five groups of Al-toxicity model (treated groups) were orally received together with Al each of the following; CoQ10 (200mg/kg), wheat grass (100mg/kg), cocoa powder (24mg/kg), vinpocetine (20mg/kg) or zinc (32mg/kg). Biochemical changes in the serum level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate deshydrogenase (LDH) as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, proteins, creatinine and urea were measured. Liver and kidney specimens from all groups were also collected for the assessment of hepatic and nephrotic level of inflammatory mediators (TNF-α, IL-6β, nuclear factor kappa B (NF-κB), Caspase-3, oxidative parameters (MDA, SOD, TAC, NO) and DNA fragmentation. Histopathological changes in liver and kidney were also evaluated. Results: Three weeks of AlCl3 (70 mg/kg, IP) exposure induced nephro- and hepato-toxicity in rats. Treatment by the all used drugs showed protection against hazards of AlCl3. The protective effects were indicated by the significant decrease in ALT, AST, ALP, LDH as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, creatinine and urea levels which were increased by Al. Liver and kidney of the treated groups showed decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation which were increased by Al, together with significant increase in total proteins, SOD and TAC which were decreased by Al. The protection against both nephro- and hepato-toxicity was more pronounced especially with CoQ10 and wheat grass than the other used drugs. Histopathological examinations confirmed the biochemical results of toxicity and of protection. Conclusion: Protection from nephrotoxicity, hepatotoxicity and the consequent degenerations induced by Al can be achieved by using different drugs as CoQ10, wheatgrass, cocoa, vinpocetine and zinc, but CoQ10 as well as wheat grass possesses the most superior protection.Keywords: aluminum, nephrotoxicity, hepatotoxicity, coenzyme Q10, wheatgrass, cocoa, vinpocetine, zinc
Procedia PDF Downloads 338257 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 317256 Innovative Grafting of Polyvinylpyrrolidone onto Polybenzimidazole Proton Exchange Membranes for Enhanced High-Temperature Fuel Cell Performance
Authors: Zeyu Zhou, Ziyu Zhao, Xiaochen Yang, Ling AI, Heng Zhai, Stuart Holmes
Abstract:
As a promising sustainable alternative to traditional fossil fuels, fuel cell technology is highly favoured due to its enhanced working efficiency and reduced emissions. In the context of high-temperature fuel cells (operating above 100 °C), the most commonly used proton exchange membrane (PEM) is the Polybenzimidazole (PBI) doped phosphoric acid (PA) membrane. Grafting is a promising strategy to advance PA-doped PBI PEM technology. The existing grafting modification on PBI PEMs mainly focuses on grafting phosphate-containing or alkaline groups onto the PBI molecular chains. However, quaternary ammonium-based grafting approaches face a common challenge. To initiate the N-alkylation reaction, deacidifying agents such as NaH, NaOH, KOH, K2CO3, etc., can lead to ionic crosslinking between the quaternary ammonium group and PBI. Polyvinylpyrrolidone (PVP) is another widely used polymer, the N-heterocycle groups within PVP endow it with a significant ability to absorb PA. Recently, PVP has attracted substantial attention in the field of fuel cells due to its reduced environmental impact and impressive fuel cell performance. However, due to the the poor compatibility of PVP in PBI, few research apply PVP in PA-doped PBI PEMs. This work introduces an innovative strategy to graft PVP onto PBI to form a network-like polymer. Due to the absence of quaternary ammonium groups, PVP does not pose issues related to crosslinking with PBI. Moreover, the nitrogen-containing functional groups on PVP provide PBI with a robust phosphoric acid retention ability. The nuclear magnetic resonance (NMR) hydrogen spectrum analysis results indicate the successful completion of the grafting reaction where N-alkylation reactions happen on both sides of the grafting agent 1,4-bis(chloromethyl)benzene. On one side, the reaction takes place with the hydrogen atoms on the imidazole groups of PBI, while on the other side, it reacts with the terminal amino group of PVP. The XPS results provide additional evidence from the perspective of the element. On synthesized PBI-g-PVP surfaces, there is an absence of chlorine (chlorine in grafting agent 1,4-bis(chloromethyl)benzene is substituted) element but a presence of sulfur element (sulfur element in terminal amino PVP appears in PBI), which demonstrates the occurrence of the grafting reaction and PVP is successfully grafted onto PBI. Prepare these modified membranes into MEA. It was found that during the fuel cell operation, all the grafted membranes showed substantial improvement in maximum current density and peak power density compared to unmodified one. For PBI-g-PVP 30, with a grafting degree of 22.4%, the peak power density reaches 1312 mW cm⁻², marking a 59.6% enhancement compared to the pristine PBI membrane. The improvement is caused by the improved PA binding ability of the membrane after grafting. The AST test result shows that the grafting membranes have better long-term durability and performance than unmodified membranes attributed to the presence of added PA binding sites, which can effectively prevent the PA leaching caused by proton migration. In conclusion, the test results indicate that grafting PVP onto PBI is a promising strategy which can effectively improve the fuel cell performance.Keywords: fuel cell, grafting modification, PA doping ability, PVP
Procedia PDF Downloads 79255 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions
Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter
Abstract:
Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel
Procedia PDF Downloads 294254 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory
Procedia PDF Downloads 117253 Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber
Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo
Abstract:
Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.Keywords: kesterite, solar ink, spin coating, photovoltaics
Procedia PDF Downloads 171252 Topography Effects on Wind Turbines Wake Flow
Authors: H. Daaou Nedjari, O. Guerri, M. Saighi
Abstract:
A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography
Procedia PDF Downloads 563251 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility
Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu
Abstract:
The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education
Procedia PDF Downloads 313250 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment
Procedia PDF Downloads 200249 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory
Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short
Abstract:
Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling
Procedia PDF Downloads 174248 Living Together Apart: Gender Differences in Transnational Couple Living Perceptions in the Ghanaian Context
Authors: Rodlyn Remina Hines
Abstract:
Males and Females respond differently to life situations, including transnational living. Being in a transnational marriage relationship may put a strain on the relationship requiring partners to adjust their behaviors and expectancies of the other partner to accommodate the disruptions in the relationship. More so, when one partner is an immigrant to a new geographic location with the other in the native country, these disruptions may be intensive. This qualitative study examined gender differences in how married Ghanaian couples respond to making a life together as a couple while living across international borders. The study asked two questions: (1) What are the perceptions of males and females on transnational living? and (2) how do married males and females respond to transnational living situations? To answer these questions, semi-structured interviews were conducted with 24 married couples- with one partner living in the United States (U.S.) and the other spouse in Ghana via purposive and snowball sampling techniques. Participants were aged 26 to 59 years with an average age of 40; the average age of relationship: 10.41; and average years of living apart: 6.7. Induction and deduction hybrid analysis strategies were used to derive emerging themes. The results highlight significant gender differences in response to transnational living status and practices. The data indicate that transnational couples with the male spouse residing in the U.S. experience more relationship strains than is the case when the female partner is the immigrant. Three couples who were in divorce proceedings at the time of the interview had the male partner residing in the U.S. and the female spouse in Ghana. These gender differences also reflected spousal visitation frequency, duration of spousal reunification, amount of and frequency of spousal remittance(s), and immigration processing procedures. Finally, the data show female immigrant partners as better managers of transnational living stresses and strains than their male counterparts. Findings from this study have implications for marriage and family practitioners and immigration policy makers.Keywords: gender differences, , ghanaian couples, ghanaian immigrants, transnational living
Procedia PDF Downloads 84247 Constructing Practices for Lifestyle Journalism Education
Authors: Lucia Vodanovic, Bryan Pirolli
Abstract:
The London College of Communication is one of the only universities in the world to offer a lifestyle journalism master’s degree. A hybrid originally constructed largely out of a generic journalism program crossed with numerous cultural studies approaches, the degree has developed into a leading lifestyle journalism education attracting students worldwide. This research project seeks to present a framework for structuring the degree as well as to understand how students in this emerging field of study value the program. While some researchers have addressed questions about journalism and higher education, none have looked specifically at the increasingly important genre of lifestyle journalism, which Folker Hanusch defines as including notions of consumerism and critique among other identifying traits. Lifestyle journalism, itself poorly researched by scholars, can relate to topics including travel, fitness, and entertainment, and as such, arguably a lifestyle journalism degree should prepare students to engage with these topics. This research uses the existing Masters of Arts and Lifestyle Journalism at the London College of Communications as a case study to examine the school’s approach. Furthering Hanusch’s original definition, this master’s program attempts to characterizes lifestyle journalism by a specific voice or approach, as reflected in the diversity of student’s final projects. This framework echoes the ethos and ideas of the university, which focuses on creativity, design, and experimentation. By analyzing the current degree as well as student feedback, this research aims to assist future educators in pursuing the often neglected field of lifestyle journalism. Through a discovery of the unique mix of practical coursework, theoretical lessons, and broad scope of student work presented in this degree program, researchers strive to develop a framework for lifestyle journalism education, referring to Mark Deuze’s ten questions for journalism education development. While Hanusch began the discussion to legitimize the study of lifestyle journalism, this project strives to go one step further and open up a discussion about teaching of lifestyle journalism at the university level.Keywords: education, journalism, lifestyle, university
Procedia PDF Downloads 307246 Pandemic-Era WIC Participation in Delaware, U.S.: Participants' Experiences and Challenges
Authors: McKenna Halverson, Allison Karpyn
Abstract:
Introduction: The COVID-19 pandemic posed unprecedented challenges for families with young children in the United States. The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), a federal nutrition assistance program that provides low-income mothers and young children with access to healthy foods (e.g., infant formula, milk, and peanut butter), mitigated some financial challenges for families. However, the U.S. experienced a national infant formula shortage and rising inflation rates during the pandemic, which likely impacted WIC participants’ shopping experiences and well-being. As such, this study aimed to characterize how the COVID-19 pandemic and related events impacted Delaware WIC participants’ in-store benefit redemption experiences and overall well-being. Method: The authors conducted semi-structured interviews with 51 WIC participants in Wilmington, Delaware. Survey measures included demographic questions and open-ended questions regarding participants’ experiences with WIC benefit redemption during the COVID-19 pandemic. Data were analyzed using a hybrid inductive and deductive coding approach. Findings: The COVID-19 pandemic significantly impacted WIC participants’ shopping experiences and well-being. Specifically, participants were forced to alter their shopping behaviors to account for rising food prices (e.g., used coupons, bought less food, used food banks). Additionally, WIC participants experienced significant distress during the national infant formula shortage resulting from difficulty finding formula to feed their children. Participants also struggled with in-store benefit redemption due to inconsistencies in shelf labelling, the WIC app, and low stock of WIC foods. These findings highlight the need to reexamine WIC operations and emergency food response policy in the United States during times of crisis to optimize public health and ensure federal nutrition assistance programs meeting the needs of low-income families with young children.Keywords: benefit redemption, COVID-19 pandemic, infant formula shortage, inflation, shopping, WIC
Procedia PDF Downloads 75245 Organisational Change: The Impact on Employees and Organisational Development
Authors: Maureen Royce, Joshi Jariwala, Sally Kah
Abstract:
Change is inevitable, but the change process is progressive. Organisational change is the process in which an organisation changes strategies, operational methods, systems, culture, and structure to affect something different in the organisation. This process can be continuous or developed over a period and driven by internal and external factors. Organisational change is essential if organisations are to survive in dynamic and uncertain environments. However, evidence from research shows that many change initiatives fail, leading to severe consequences for organisations and their resources. The complex models of third sector organisations, i.e., social enterprise, compounds the levels of change in these organisations. Interestingly, innovation is associated with a change in social enterprises due to the hybridity of product and service development. Furthermore, the creation of social intervention has offered a new process and outcomes to the lifecycle of change. Therefore, different forms of organisational innovation are developed, i.e., total, evolutionary, expansionary, and developmental, which affect the interventions of social enterprises. This raises both theoretical and business concerns on how the competing hybrid nature of social enterprises change, how change is managed, and the impact on these organisations. These perspectives present critical questions for further investigation. In this study, we investigate the impact of organisational change on employees and organisational development at DaDaFest –a disability arts organisation with a social focus based in Liverpool. The three main objectives are to explore the drivers of change and the implementation process; to examine the impact of organisational change on employees and; to identify barriers to organisation change and development. To address the preceding research objectives, qualitative research design is adopted using semi-structured interviews. Data is analysed using a six-step thematic analysis framework, which enables the study to develop themes depicting the impact of change on employees and organisational development. This study presents theoretical and practical contributions for academics and practitioners. The knowledge contributions encapsulate the evolution of change and the change cycle in a social enterprise. However, practical implications provide critical insights into the change management process and the impact of change on employees and organisational development.Keywords: organisational change, change management, organisational change system, social enterprise
Procedia PDF Downloads 126244 Data Confidentiality in Public Cloud: A Method for Inclusion of ID-PKC Schemes in OpenStack Cloud
Authors: N. Nalini, Bhanu Prakash Gopularam
Abstract:
The term data security refers to the degree of resistance or protection given to information from unintended or unauthorized access. The core principles of information security are the confidentiality, integrity and availability, also referred as CIA triad. Cloud computing services are classified as SaaS, IaaS and PaaS services. With cloud adoption the confidential enterprise data are moved from organization premises to untrusted public network and due to this the attack surface has increased manifold. Several cloud computing platforms like OpenStack, Eucalyptus, Amazon EC2 offer users to build and configure public, hybrid and private clouds. While the traditional encryption based on PKI infrastructure still works in cloud scenario, the management of public-private keys and trust certificates is difficult. The Identity based Public Key Cryptography (also referred as ID-PKC) overcomes this problem by using publicly identifiable information for generating the keys and works well with decentralized systems. The users can exchange information securely without having to manage any trust information. Another advantage is that access control (role based access control policy) information can be embedded into data unlike in PKI where it is handled by separate component or system. In OpenStack cloud platform the keystone service acts as identity service for authentication and authorization and has support for public key infrastructure for auto services. In this paper, we explain OpenStack security architecture and evaluate the PKI infrastructure piece for data confidentiality. We provide method to integrate ID-PKC schemes for securing data while in transit and stored and explain the key measures for safe guarding data against security attacks. The proposed approach uses JPBC crypto library for key-pair generation based on IEEE P1636.3 standard and secure communication to other cloud services.Keywords: data confidentiality, identity based cryptography, secure communication, open stack key stone, token scoping
Procedia PDF Downloads 384243 District 10 in Tehran: Urban Transformation and the Survey Evidence of Loss in Place Attachment in High Rises
Authors: Roya Morad, W. Eirik Heintz
Abstract:
The identity of a neighborhood is inevitably shaped by the architecture and the people of that place. Conventionally the streets within each neighborhood served as a semi-public-private extension of the private living spaces. The street as a design element formed a hybrid condition that was neither totally public nor private, and it encouraged social interactions. Thus through creating a sense of community, one of the most basic human needs of belonging was achieved. Similar to major global cities, Tehran has undergone serious urbanization. Developing into a capital city of high rises has resulted in an increase in urban density. Although allocating more residential units in each neighborhood was a critical response to the population boom and the limited land area of the city, it also created a crisis in terms of social communication and place attachment. District 10 in Tehran is a neighborhood that has undergone the most urban transformation among the other 22 districts in the capital and currently has the highest population density. This paper will explore how the active streets in district 10 have changed into their current condition of high rises with a lack of meaningful social interactions amongst its inhabitants. A residential building can be thought of as a large group of people. One would think that as the number of people increases, the opportunities for social communications would increase as well. However, according to the survey, there is an indirect relationship between the two. As the number of people of a residential building increases, the quality of each acquaintance reduces, and the depth of relationships between people tends to decrease. This comes from the anonymity of being part of a crowd and the lack of social spaces characterized by most high-rise apartment buildings. Without a sense of community, the attachment to a neighborhood is decreased. This paper further explores how the neighborhood participates to fulfill ones need for social interaction and focuses on the qualitative aspects of alternative spaces that can redevelop the sense of place attachment within the community.Keywords: high density, place attachment, social communication, street life, urban transformation
Procedia PDF Downloads 127242 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior
Authors: Mohamed dammak
Abstract:
Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis
Procedia PDF Downloads 85241 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes
Authors: Misra Ayse Adsiz, Selim Selvi
Abstract:
In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.Keywords: agile, design, missile, scrum
Procedia PDF Downloads 168240 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank
Authors: Siva Teja Golla, B. Venkatesham
Abstract:
The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.Keywords: sloshing, hit noise, splash noise, sound quality
Procedia PDF Downloads 29