Search results for: biological traits
989 Study of Bagmati River Pollution Level and Remediation of Heavy Metal using Microbial Fuel Cell
Authors: Jarina Joshi, Sujeeta Maharjan
Abstract:
This study was used to assess the potential of MFCs in removing heavy metals from the urban Bagmati River while (2) simultaneously producing electricity. Upon physicochemical and biological analysis of the collected water samples from three different locations during summer and winter, it was found that the Chemical Oxygen Demand (COD) and Total Suspended Solid (TSS) values exceeded the Ministry of Environment’s (MOE 2010) guidelines, and the river was contaminated with lead (Pb). The meta-genomic analysis, revealed the presence of four electrogenic bacterial genera: Pseudomonas, Rhodobacter, Rhodoferax, and Shewanella. Upon attainment of optimal configuration - COD 3500mg/L, a Graphite rod anode (TSA-13.31cm2), Platinum cathode (10×10×0.5mm) as electrodes, and a 1% bacterial consortium- MFCs with inoculum enriched Bagmati water, showed a maximum voltage of 0.08 ± 0.001 V, a current density of 0.8 ± 0.01 A/m2, and a power density of 0.070 ± 0.002 W/m2. Comparatively higher metal removal was also achieved in this operation, with approximately 100% As (III), 99% Pb (II), 98% Hg (II), and at least 25% Cr (VI) removal. Our results highlight MFC to be able to remediate heavy metals and also generating electricity. The research showed that though the pollution in Bagmati River had decreased in terms of parametric concentrations as researched in Baniya et al, 2019, it is still polluted exceeding guideline values, possibly indicating distortion of natural restoration capacity of river. Additionally, it also showed that with downstream flow of river, it indeed becomes less polluted but human activities isn’t letting this natural process to revive.Keywords: bagmati, heavy metal contamination, heavy metal remediation, bio-electricity
Procedia PDF Downloads 4988 Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering
Authors: D. Adel, F. Giacomini, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, B. Peleskae, J. Günster, A. Houshmand, M. Stiller, A. Rack, K. Ghaffar, A. Gamal, M. El Mofty, C. Knabe
Abstract:
The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering.Keywords: calcium alkali orthophosphate, extracellular matrix mineralization, osteoblast differentiation, rapid prototyping, scaffold
Procedia PDF Downloads 330987 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation
Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta
Abstract:
Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD
Procedia PDF Downloads 402986 Pharmacokinetic and Tissue Distribution of Etoposide Loaded Modified Glycol Chitosan Nanoparticles
Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Mehboob Alam
Abstract:
The development of efficient delivery systems remains a major concern in cancer chemotherapy as many efficacious anticancer drugs are hydrophobic and difficult to formulate. Nanomedicines based on drug-loaded amphiphilic glycol chitosan micelles offer potential advantages for the formulation of drugs such as etoposide that may improve the pharmacokinetics and reduce the formulation-related adverse effects observed with current formulations. Amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxysuccinimide and quaternization to glycol chitosan backbone. To this end, a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternization, yielding a 13 kDa amphiphilic polymer. Micelles prepared from this amphiphilic polymer had a size of 162nm and were able to encapsulate up to 3 mg/ml etoposide. Pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drugs after intravenous administration. AUC 0.5-24h showed statistically significant difference in ETP-GCPQ vs. Commercial preparation in liver (25 vs.70, p<0.001), spleen (27 vs.36, p<0.05), lungs (42 vs.136,p<0.001),kidneys(25 vs.70,p< 0.05),and brain(19 vs.9,p<0.001). ETP-GCPQ crossed the blood-brain barrier, and 4, 3.5, 2.6, 1.8, 1.7, 1.5, and 2.5 fold higher levels of etoposide were observed at 0.5, 1, 2, 4, 6, 12, and 24hrs; respectively suggesting these systems could deliver hydrophobic anticancer drugs such as etoposide to tumors but also increased their transport through the biological barriers, thus making it a good delivery systemKeywords: glycol chitosan, micelles, pharmacokinetics, tissue distribution
Procedia PDF Downloads 104985 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 328984 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.
Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson
Abstract:
Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control
Procedia PDF Downloads 151983 Hyaluronic Acid as Potential Excipient for Buccal Delivery
Authors: Flavia Laffleur
Abstract:
Summary: Biomaterials have gained immense interest in the pharmaceutical research in the last decades. Hyaluronic acid a carbohydrate and mucopolysaccharide was chemically modified in order to achieve and establish a promising platform for buccal drug delivery. Aim: Novel biomaterial was tested for its potential for buccal drug delivery. Background: Polysaccharide hyaluronic acid (HA) was chemically modified with cysteine ethyl ether (CYS). By immobilization of the thiol-bearing ligand on the polymeric backbone the thiolated bioconjugate HA-CYS was obtained. Methodology: Mucoadhesive, permeation enhancing and stability potential as well as mechanical, physicochemical properties further mucoadhesive strength, swelling index and residence time were investigated. The developed thiolated bioconjugate displayed enhanced mucoadhesiveness on buccal mucosa as well as permeation behavior and polymer stability. The near neutral pH and negative cytotoxicity studies indicated their non-irritability and biocompatible nature with biological tissues. Further, the model drug sulforhodamine 101 was incorporated to determine its drug release profiles. Results: The synthesized thiomer showed no toxicity. The mucoadhesion of thiolated hyaluronic acid on buccal mucosa was significantly improved in comparison to unmodified one. The biomaterial showed 2.5-fold higher stability in polymer structure. The release of sulforhodamine in the presence of thiolated hyaluronic acid was 2.3-fold increased compared to hyaluronic acid. Conclusion: Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. So far, hyaluronic acid was not evaluated for buccal drug delivery.Keywords: buccal delivery, hyaluronic acid, mucoadhesion, thiomers
Procedia PDF Downloads 502982 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency
Procedia PDF Downloads 524981 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow
Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran
Abstract:
Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.Keywords: proteomics, reproduction, biomarker, immunity
Procedia PDF Downloads 412980 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential
Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran
Abstract:
Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.Keywords: bioavailability, naringenin, nanosuspension, oral delivery
Procedia PDF Downloads 326979 DNA as an Instrument in Constructing Narratives and Justice in Criminal Investigations: A Socio-Epistemological Exploration
Authors: Aadita Chaudhury
Abstract:
Since at least the early 2000s, DNA profiling has achieved a preeminent status in forensic investigations into criminal acts. While the criminal justice system has a long history of using forensic evidence and testing them through establish technoscientific means, the primacy of DNA in establishing 'truth' or reconstructing a series of events is unparalleled in the history of forensic science. This paper seeks to elucidate the ways in which DNA profiling has become the most authoritative instrument of 'truth' in criminal investigations, and how it is used in the legal process to ascertain culpability, create the notion of infallible evidence, and advance the search for justice. It is argued that DNA profiling has created a paradigm shift in how the legal system and the general public understands crime and culpability, but not without limitations. There are indications that even trace amounts of DNA evidence can point to causal links in a criminal investigation, however, there still remains many rooms to create confusion and doubt from empirical evidence within the narrative of crimes. Many of the shortcomings of DNA-based forensic investigations are explored and evaluated with regards to claims of the authority of biological evidence and implications for the public understanding of the elusive concepts of truth and justice in the present era. Public misinformation about the forensic analysis processes could produce doubt or faith in the judgements rooted in them, depending on other variables presented at the trial. A positivist understanding of forensic science that is shared by the majority of the population does not take into consideration that DNA evidence is far from definitive, and can be used to support any theories of culpability, to create doubt and to deflect blame.Keywords: DNA profiling, epistemology of forensic science, philosophy of forensic science, sociology of scientific knowledge
Procedia PDF Downloads 208978 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon
Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit
Abstract:
A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon
Procedia PDF Downloads 236977 Integrated Imaging Management System: An Approach in the Collaborative Coastal Resource Management of Bagac, Bataan
Authors: Aljon Pangan
Abstract:
The Philippines being an archipelagic country, is surrounded by coastlines (36,289 km), coastal waters (226,000 km²), oceanic waters (1.93 million km²) and territorial waters (2.2 million km²). Studies show that the Philippine coastal ecosystems are the most productive and biologically diverse in the world, however, plagued by degradation problems due to over-exploitation and illegal activities. The existence of coastal degradation issues in the country led to the emergence of Coastal Resource Management (CRM) as an approach to both national and local government in providing solutions for sustainable coastal resource utilization. CRM applies the idea of planning, implementing and monitoring through the lens of collaborative governance. It utilizes collective action and decision-making to achieve sustainable use of coastal resources. The Municipality of Bagac in Bataan is one of the coastal municipalities in the country who crafts its own CRM Program as a solution to coastal resource degradation and problems. Information and Communications Technology (ICT), particularly Integrated Imaging Management System (IIMS) is one approach that can be applied in the formula of collaborative governance which entails the Government, Private Sector, and Civil Society. IIMS can help policymakers, managers, and citizens in managing coastal resources through analyzed spatial data describing the physical, biological, and socioeconomic characteristics of the coastal areas. Moreover, this study will apply the qualitative approach in deciphering possible impacts of the application of IIMS in the Coastal Resource Management policy making and implementation of the Municipality of Bagac.Keywords: coastal resource management, collaborative governance, integrated imaging management system, information and communication technology
Procedia PDF Downloads 397976 An Academic Theory on a Sustainable Evaluation of Achatina Fulica Within Ethekwini, KwaZulu-Natal
Authors: Sibusiso Trevor Tshabalala, Samuel Lubbe, Vince Vuledzani Ndou
Abstract:
Dependency on chemicals has had many disadvantages in pest management control strategies. Such genetic rodenticide resistance and secondary exposure risk are what is currently being experienced. Emphasis on integrated pest management suggests that to control future pests, early intervention and economic threshold development are key starting points in crop production. The significance of this research project is to help establish a relationship between Giant African Land Snail (Achatina Fulica) solution extract, its shell chemical properties, and farmer’s perceptions of biological control in eThekwini Municipality Agri-hubs. A mixed design approach to collecting data will be explored using a trial layout in the field and through interviews. The experimental area will be explored using a split-plot design that will be replicated and arranged in a randomised complete block design. The split-plot will have 0, 10, 20 and 30 liters of water to one liter of snail solution extract. Plots were 50 m² each with a spacing of 12 m between each plot and a plant spacing of 0.5 m (inter-row) ‘and 0.5 m (intra-row). Trials will be irrigated using sprinkler irrigation, with objective two being added to the mix every 4-5 days. The expected outcome will be improved soil fertility and micro-organisms population proliferation.Keywords: giant african land snail, integrated pest management, photosynthesis, genetic rodenticide resistance, control future pests, shell chemical properties
Procedia PDF Downloads 104975 Elimination of Mixed-Culture Biofilms Using Biological Agents
Authors: Anita Vidacs, Csaba Vagvolgyi, Judit Krisch
Abstract:
The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms.Keywords: biofilm, essential oils, surfaces, terpinene-4-ol
Procedia PDF Downloads 112974 Thermal and Mechanical Properties of Polycaprolactone-Soy Lecithin Modified Bentonite Nanocomposites
Authors: Danila Merino, Leandro N. Ludueña, Vera A. Alvarez
Abstract:
Clays are commonly used to reinforce polymeric materials. In order to modify them, long-chain quaternary-alkylammonium salts have been widely employed. However, the application of these clays in biological fields is limited by the toxicity and poor biocompatibility presented by these modifiers. Meanwhile, soy lecithin, acts as a natural biosurfactant and environment-friendly biomodifier. In this report, we analyse the effect of content of soy lecithin-modified bentonite on the properties of polycaprolactone (PCL) nanocomposites. Commercial grade PCL (CAPA FB 100) was supplied by Perstorp, with Mw = 100000 g/mol. Minarmco S.A. and Melar S.A supplied bentonite and soy lecithin, respectively. Clays with 18, 30 and 45 wt% of organic content were prepared by exchanging 4 g of Na-Bent with 1, 2 and 4 g of soy lecithin aqueous and acid solution (pH=1, with HCl) at 75ºC for 2 h. Then, they were washed and lyophilized for 72 h. Samples were labeled A, B and C. Nanocomposites with 1 and 2 wt.% of each clay were prepared by melt-intercalation followed by compression-moulding. An intensive Brabender type mixer with two counter-rotating roller rotors was used. Mixing temperature was 100 ºC; speed of rotation was 100 rpm. and mixing time was 10 min. Compression moulding was carried out in a hydraulic press under 75 Kg/mm2 for 10 minutes at 100 ºC. The thickness of the samples was about 1 mm. Thermal and mechanical properties were analysed. PCL nanocomposites with 1 and 2% of B presented the best mechanical properties. It was observed that an excessive organic content produced an increment on the rigidity of PCL, but caused a detrimental effect on the tensile strength and elongation at break of the nanocomposites. Thermogravimetrical analyses suggest that all reinforced samples have higher resistance to degradation than neat PCL.Keywords: chemical modification, clay, nanocomposite, characterization
Procedia PDF Downloads 201973 Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark
Authors: Gehan F. Abdel Raoof, Ataa A. Said, Khaled Y. Mohamed, Hala M. Mohammed
Abstract:
Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug.Keywords: analgesic, anti-inflammatory, bark, petroleum ether extract, Pleiogynium timorense
Procedia PDF Downloads 169972 A Study on Functional Performance and Physical Self-esteem Levels of Differently-Abled Basket Ballplayers: A Case Series
Authors: Prerna Mohan Saxena, Avni Joshi, Raju K Parasher
Abstract:
Disability is a state of decreased functioning associated with disease, disorder, injury, or other health condition, which in the context of one’s environment is experienced as an impairment, activity limitation, or participation restriction. With the concept of disability evolving over the years, the current ICF model of disability has integrated this concept into a comprehensive whole of multiple dimensions of human functioning, including biological, psychological, social, and environmental aspects. Wheelchair basketball is one of the greatest examples of adapted sports for the disabled. Through this study, we aim to evaluate the functional performance and self-esteem levels in differently-abled pediatric wheelchair basketball players, providing an insight on their abilities and deficits and how they can be worked on at a larger level to improve overall performance. The study was conducted on 9 pediatric wheelchair basketball players at Amar Jyoti school for inclusive education Delhi their physical performance was assessed using a battery of tests, and physical self esteem was assessed using the Physical self-description instrument (PSDQ-S). Results showed that 9 participants age ranged between 10-21 years, mostly males with BMI ranging between 16.7 to 28.9 kg/m2 most of them had the experience of 5 to 6 years of playing the sport. The data showed physical performance in accordance to years of experience of playing, physical self esteem showed a different perspective, with experience players scoring less on it. This study supports a multidimensional construct of physical performance and physical self-esteem, suggesting that both may be applied on the wheelchair basketball players at competitive levels.Keywords: ase series, physical performance, physical self-esteem, wheelchair basketball
Procedia PDF Downloads 135971 Spatio-Temporal Variation of Suspended Sediment Concentration in the near Shore Waters, Southern Karnataka, India
Authors: Ateeth Shetty, K. S. Jayappa, Ratheesh Ramakrishnan, A. S. Rajawat
Abstract:
Suspended Sediment Concentration (SSC) was estimated for the period of four months (November, 2013 to February 2014) using Oceansat-2 (Ocean Colour Monitor) satellite images to understand the coastal dynamics and regional sediment transport, especially distribution and budgeting in coastal waters. The coastal zone undergoes continuous changes due to natural processes and anthropogenic activities. The importance of the coastal zone, with respect to safety, ecology, economy and recreation, demands a management strategy in which each of these aspects is taken into account. Monitoring and understanding the sediment dynamics and suspended sediment transport is an important issue for coastal engineering related activities. A study of the transport mechanism of suspended sediments in the near shore environment is essential not only to safeguard marine installations or navigational channels, but also for the coastal structure design, environmental protection and disaster reduction. Such studies also help in assessment of pollutants and other biological activities in the region. An accurate description of the sediment transport, caused by waves and tidal or wave-induced currents, is of great importance in predicting coastal morphological changes. Satellite-derived SSC data have been found to be useful for Indian coasts because of their high spatial (360 m), spectral and temporal resolutions. The present paper outlines the applications of state‐of‐the‐art operational Indian Remote Sensing satellite, Oceansat-2 to study the dynamics of sediment transport.Keywords: suspended sediment concentration, ocean colour monitor, sediment transport, case – II waters
Procedia PDF Downloads 253970 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 292969 The Effects of Varying Nutrient Conditions on Hydrogen Production in PGR5 Deficient C. Reinhardtii Mutants
Authors: Samuel Mejorado
Abstract:
C. Reinahrdtii serves as one of the most promising organisms from which to obtain biological hydrogen. However, its production catalyst, [FeFe]-hydrogenase, is largely inhibited by the presence of oxygen. In recent years, researchers have identified a Proton Gradient Regulation 5 (PGR5) deficient mutant, which shows enhanced respiration and lower accumulations of oxygen within the system. In this research, we investigated the effects of varying nutrient conditions on PGR5 mutants' ability to produce hydrogen. After growing PGR5 mutants in varying nutrient conditions under 55W fluorescent lamps at 30℃ with constant stirring at 200 rpm, a common water displacement method was utilized to obtain a definitive volumetric reading of hydrogen produced by these mutants over a period of 12 days. After the trials, statistical t-tests and ANOVAs were performed to better determine the effect which nutrient conditions have on PGR5 mutants' ability to produce hydrogen. In this, we report that conditions of sulfur deprivation most optimally enhanced hydrogen production within these mutants, with groups grown under these conditions demonstrating the highest production capacity over the entire 12-day period. Similarly, it was found that when grown under conditions of nitrogen deprivation, a favorable shift towards carbon fixation and overall lipid/starch metabolism was observed. Overall, these results demonstrate that PGR5-deficient mutants stand as a promising source of biohydrogen when grown under conditions of sulfur deprivation. To date, photochemical characteristics of [FeFe]-hydrogenase in these mutants have yet to be investigated under conditions of sulfur deprivation.Keywords: biofuel, biohydrogen, [FeFe]-hydrogenase, algal biofuel
Procedia PDF Downloads 145968 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell
Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa
Abstract:
Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions
Procedia PDF Downloads 171967 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 87966 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses
Authors: Jiahui Song
Abstract:
There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration
Procedia PDF Downloads 18965 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method
Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi
Abstract:
This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method
Procedia PDF Downloads 394964 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 334963 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 194962 Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima
Authors: Maria João Ferreira, Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M. Rodrigues, Helena Silva, Ângela Cunha
Abstract:
Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions.Keywords: halophytes, PGPB, rhizosphere engineering, biofertilizers, primary metabolite profiling, plant inoculation, Salicornia ramosissima
Procedia PDF Downloads 160961 Biodegradable Polymer Film Incorporated with Polyphenols for Active Packaging
Authors: Shubham Sharma, Swarna Jaiswal, Brendan Duffy, Amit Jaiswal
Abstract:
The key features of any active packaging film are its biodegradability and antimicrobial properties. Biological macromolecules such as polyphenols (ferulic acid (FA) and tannic acids (TA)) are naturally found in plants such as grapes, berries, and tea. In this study, antimicrobial activity screening of several polyphenols was carried out by using minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of gram-negative bacteria - Salmonella typhimurium, Escherichia coli, and two-gram positive strains - Staphylococcus aureus and Listeria monocytogenes. FA and TA had shown strong antibacterial activity at the low concentration against both gram-positive and gram-negative bacteria. The selected polyphenols FA and TA were incorporated at various concentrations (1%, 5%, and 10% w/w) in the poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) composite film by using the solvent casting method. The effect of TA and FA incorporation in the packaging was characterized based on morphological, optical, color, mechanical, thermal, and antimicrobial properties. The thickness of the FA composite film was increased by 1.5 – 7.2%, while for TA composite film, it increased by 0.018 – 1.6%. FA and TA (10 wt%) composite film had shown approximately 65% - 66% increase in the UV barrier property. As the FA and TA concentration increases from 1% - 10% (w/w), the TS value increases by 1.98 and 1.80 times, respectively. The water contact angle of the film was observed to decrease significantly with the increase in the FA and TA content in the composite film. FA has shown more significant increase in antimicrobial activity than TA in the composite film against Listeria monocytogenes and E. coli. The FA and TA composite film has the potential for its application as an active food packaging.Keywords: active packaging, biodegradable film, polyphenols, UV barrier, tensile strength
Procedia PDF Downloads 152960 Use of Amaranthus Roxburghianus Root Extract in the Treatment of Ulcerative Colitis in Mice
Authors: S. A. Nirmal, J. M. Ingale, G. S. Asane, S. C. Pal, Subhash C. Mandal
Abstract:
The present work was undertaken to determine the effects of Amaranthus roxburghianus Nevski. (Amaranthaceae) root alone and in combination with piperine in treating ulcerative colitis (UC) in mice. Swiss albino mice were divided into seven groups (n = 6). Standard group received prednisolone (5 mg/kg, i.p.). Treatment groups received hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and a combination of hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and piperine (5 mg/kg, p.o.). Ulcer index, colitis severity, myeloperoxidase (MPO), malondialdehyde and glutathione were estimated from blood and tissue. Column chromatography of the extract was done and purified fractions were analyzed by gas chromatography-mass spectroscopy (GC-MS). Treatment with the combination of hydroalcoholic extract of A. roxburghianus and piperine showed minimal ulceration, hemorrhage, necrosis and leucocyte infiltration by histopathological observation. Acetic acid increased MPO levels in blood and colon tissue to 355 U/mL and 385 U/mg, respectively. The combination of hydroalcoholic extract (100 mg/kg) and piperine (5 mg/kg) significantly decreased MPO in blood and tissue to 182 U/mL and 193 U/mg, respectively. Similarly, this combination significantly reduced MPO and increased glutathione levels in blood and tissue. Various phytoconstituents were detected by GC-MS. The combination of hydroalcoholic extract and piperine is effective in the treatment of UC and the effects are comparable with the standard drug prednisolone. 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, eugenol and benzene, and 1-(1,5-dimethyl-4-hexenyl)-4-methyl are reported having analgesic, anti-inflammatory, and antioxidant properties; they may play a role in the biological activity of A. roxburghianus root.Keywords: Amaranthus roxburghianus, ulcerative colitis, anti-inflammatory, ulcerative colitis
Procedia PDF Downloads 528