Search results for: Process models
18509 Endocrine Disruptors Effects on the 20-Hydroxyecdysone Concentration and the Vitellogenin Gene Expression in Gammarus sp.
Authors: Eric Gismondi, Aurelie Bigot-Clivot
Abstract:
Endocrine disruptors (EDCs) are well known to disrupt the development and the reproduction of exposed organisms. Although this point has been studied in vertebrate models, the limited knowledge of the endocrine system of invertebrates makes the evaluation of EDCs effects difficult. However, invertebrates represent the major part of aquatic ecosystems, such as amphipods Gammaridea, which are crucial for their functioning (e.g., litter degradation, food resource). Moreover, gammarids are hosts of parasites such as vertically-transmitted microsporidia (microsporidia VT), which could be confounding factors in assessment of EDC effects. Indeed, some microsporidia VT could have endocrine effects by their own present in the host since it was observed for example, a feminization of juvenile males, which become phenotypic females. This work evaluated the impact of ethinylestradiol (EE₂, estrogenic), cyproterone acetate (CPA, anti-androgenic), 4-hydroxytamoxifen (4HT, anti-estrogenic) and 17α-methyltestosterone (17MT - androgenic), on the 20-hydroxyecdysone concentration (i.e. 20HE - molt process) and the vitellogenin gene expression (i.e. reproduction) in the freshwater amphipod Gammarus pulex, after a 96h laboratory exposure. In addition, the presence of microsporidia VT was verified in order to analyze the effect of this confounding factor. Results of this study shown that, although endocrine systems of invertebrates and vertebrates are different, EDCs proved in vertebrates could also affect biological functions hormonally controlled in invertebrates. Indeed, the molt process of crustaceans was disrupted in the first stage (i.e. 20-HE concentration) and therefore, could affect, at the long term, the population dynamic. In addition, it was observed that G. pulex was differently impacted according to the gender and parasitism, which underline the importance to take into account these confounding factors to better evaluate the EDCs impact on invertebrate populations.Keywords: endocrine disruption, gammarus sp., molt, parasitism
Procedia PDF Downloads 16418508 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology
Procedia PDF Downloads 24218507 Methodology for Various Sand Cone Testing
Authors: Abel S. Huaynacho, Yoni D. Huaynacho
Abstract:
The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools.Keywords: cone sand test, density bulk, ASTM D1556, QA/QC
Procedia PDF Downloads 13718506 Popular eReaders
Authors: Tom D. Gedeon, Ujala Rampaul
Abstract:
The evaluation of electronic consumer goods are most often done from the perspective of analysing the latest models, comparing their advantages and disadvantages with respect to price. This style of evaluation is often performed by one or a few product experts on a wide range of features that may not be applicable to each user. We instead used a scenario-based approach to evaluate a number of e-readers. The setting is similar to a user who is interested in a new product or technology and has allocated a limited budget. We evaluate the quality and usability of e-readers available within that budget range. This is based on the assumption of a rational market which prices older second hand devices the same as functionally equivalent new devices. We describe our evaluation and comparison of four branded eReaders, as the initial stage of a larger project. The scenario has a range of tasks approximating a busy person who does not bother to read the manual. We found that navigation within books to be the most significant differentiator between the eReaders in our scenario based evaluation process.Keywords: eReader, scenario based, price comparison, Kindle, Kobo, Nook, Sony, technology adoption
Procedia PDF Downloads 53018505 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC
Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin
Abstract:
Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis
Procedia PDF Downloads 41818504 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 15718503 Sea-Spray Calculations Using the MESO-NH Model
Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola
Abstract:
A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols
Procedia PDF Downloads 14918502 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 31918501 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 10618500 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 3418499 Housing Delivery in Nigeria: Repackaging for Sustainable Development
Authors: Funmilayo L. Amao, Amos O. Amao
Abstract:
It has been observed that majority of the people are living in poor housing quality or totally homeless in urban center despite all governmental policies to provide housing to the public. On the supply side, various government policies in the past have been formulated towards overcoming the huge shortage through several Housing Reform Programmes. Despite these past efforts, housing continues to be a mirage to ordinary Nigerian. Currently, there are various mass housing delivery programmes such as the affordable housing scheme that utilize the Public Private Partnership effort and several Private Finance Initiative models could only provide for about 3% of the required stock. This suggests the need for a holistic solution in approaching the problem. The aim of this research is to find out the problems hindering the delivery of housing in Nigeria and its effects on housing affordability. The specific objectives are to identify the causes of housing delivery problems, to examine different housing policies over years and to suggest a way out for sustainable housing delivery. This paper also reviews the past and current housing delivery programmes in Nigeria and analyses the demand and supply side issues. It identifies the various housing delivery mechanisms in current practice. The objective of this paper, therefore, is to give you an insight into the delivery option for the sustainability of housing in Nigeria, given the existing delivery structures and the framework specified in the New National Housing Policy. The secondary data were obtained from books, journals and seminar papers. The conclusion is that we cannot copy models from other nations, but should rather evolve workable models based on our socio-cultural background to address the huge housing shortage in Nigeria. Recommendations are made in this regard.Keywords: housing, sustainability, housing delivery, housing policy, housing affordability
Procedia PDF Downloads 29618498 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 22218497 DEM Simulation of the Formation of Seed Granules in Twin-Screw Granulation Process
Authors: Tony Bediako Arthur, Nejat Rahmanian, Nana Gyan Sekyi
Abstract:
The possibility of producing seeded granules from fine and course powders is a major challenge as the control parameters that affect its producibility is still under investigation. The seeded granulation is a novel form of producing granules where the granule is made up of larger particles at the core, which are surrounded by fine particles. The possibility of managing granulation through course particle feed rate control makes seeded granulation in continuous granulation useful in terms of process control. Twin screw granulation is now a major process of choice for the wet continuous granulation process in the industry. It is, therefore, imperative to investigate the process control parameters that influence the formation of seeded granules in twin screw granulation. In this paper, the effect of the twin screws rotating speed on the production of seeded granules has been examined. Pictorial and quantitative analysis indicates a high number of seeded granules forming at low screw rotating speeds. It is also instructive to say that higher tensile stress occurs at the kneading section of the screws; thus, higher rotating speed courses the fines for breaking off from the seed particle.Keywords: DEM, twin-screw, Seeded granules, Simulation
Procedia PDF Downloads 8818496 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact
Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet
Abstract:
A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.Keywords: new test rig, rolling contact fatigue, rail, small scale
Procedia PDF Downloads 48518495 Implementation of Lean Production in Business Enterprises: A Literature-Based Content Analysis of Implementation Procedures
Authors: P. Pötters, A. Marquet, B. Leyendecker
Abstract:
The objective of this paper is to investigate different implementation approaches for the implementation of Lean production in companies. Furthermore, a structured overview of those different approaches is to be made. Therefore, the present work is intended to answer the following research question: What differences and similarities exist between the various systematic approaches and phase models for the implementation of Lean Production? To present various approaches for the implementation of Lean Production discussed in the literature, a qualitative content analysis was conducted. Within the framework of a qualitative survey, a selection of texts dealing with lean production and its introduction was examined. The analysis presents different implementation approaches from the literature, covering the descriptive aspect of the study. The study also provides insights into similarities and differences among the implementation approaches, which are drawn from the analysis of latent text contents and author interpretations. In this study, the focus is on identifying differences and similarities among systemic approaches for implementing Lean Production. The research question takes into account the main object of consideration, objectives pursued, starting point, procedure, and endpoint of the implementation approach. The study defines the concept of Lean Production and presents various approaches described in literature that companies can use to implement Lean Production successfully. The study distinguishes between five systemic implementation approaches and seven phase models to help companies choose the most suitable approach for their implementation project. The findings of this study can contribute to enhancing transparency regarding the existing approaches for implementing Lean Production. This can enable companies to compare and contrast the available implementation approaches and choose the most suitable one for their specific project.Keywords: implementation, lean production, phase models, systematic approaches
Procedia PDF Downloads 10418494 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels
Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen
Abstract:
The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.Keywords: Fuzzy ANP, hostel, organizational performance, strategy management
Procedia PDF Downloads 20018493 Factors Affecting the Critical Understanding of the Strategies Which Children Use to Motivate Parents in the Family Buying Process: Case of British Bangladeshi Children in the UK
Authors: Salma Akter, Mohammad M. Haque, Lawrence Akwetey
Abstract:
An empirical research design will analyze different factors/predictors children use to influence their parents in the family buying decision process in the unexplored area of British Bangladeshi children in the United Kingdom. The proposed conceptual model of factors- buying decision making process will be tested by the Structure Equation Model. A structured Questionnaire and secondary sources will employ to collect data and analyse and measure the validity by Statistical tools (SPSS) and Microsoft Excel. The Contemporary research aims to use the deductive approach developing the research questions and testing the hypothesis to identify the impact of different strategies British Bangladeshi children used to influence their parents in the family buying decision which was overlooked in the previous research.Keywords: British Bangladeshi children, buying decision process, children influence, influential factors
Procedia PDF Downloads 26918492 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges
Authors: Dianelys Vega, Carlos Magluta, Ney Roitman
Abstract:
The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction
Procedia PDF Downloads 13218491 Modelling Medieval Vaults: Digital Simulation of the North Transept Vault of St Mary, Nantwich, England
Authors: N. Webb, A. Buchanan
Abstract:
Digital and virtual heritage is often associated with the recreation of lost artefacts and architecture; however, we can also investigate works that were not completed, using digital tools and techniques. Here we explore physical evidence of a fourteenth-century Gothic vault located in the north transept of St Mary’s church in Nantwich, Cheshire, using existing springer stones that are built into the walls as a starting point. Digital surveying tools are used to document the architecture, followed by an analysis process to hypothesise and simulate possible design solutions, had the vault been completed. A number of options, both two-dimensionally and three-dimensionally, are discussed based on comparison with examples of other contemporary vaults, thus adding another specimen to the corpus of vault designs. Dissemination methods such as digital models and 3D prints are also explored as possible resources for demonstrating what the finished vault might have looked like for heritage interpretation and other purposes.Keywords: digital simulation, heritage interpretation, medieval vaults, virtual heritage, 3d scanning
Procedia PDF Downloads 34418490 Systems Contextual Integrated Model for Clinical Psychology and Social Work
Authors: Raymond C. Hawkins II, Catherine A. Hawkins
Abstract:
The System Contextual Integrated Model (SCIM), developed as a trans-theoretical framework for selecting measures for psychotherapy process and outcome, is reformulated for behavioral health applications. The SCIM “healing cycle” is an allostatic hedonic affective-cognitive right-hemisphere–left-hemisphere coordinated process involving positive alliesthesia that mitigates traumatic pain and generates psychological flexibility. The SCIM “trauma cycle” is an allostatic overload alliesthesia opponent process with long-lasting pathology sequelae. The social ecological context moderates the “healing cycle” and the “trauma cycle.” Repeated evocation of the “healing cycle” in a therapeutic relationship can gradually relieve trauma sequelae. The SCIM is applied to pain, obese binge eating, and substance use disorders.Keywords: allostasis, alliesthesia, opponent process, behavioral health, assessment
Procedia PDF Downloads 14218489 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 38018488 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 4618487 Hot Forging Process Simulation of Outer Tie Rod to Reduce Forming Load
Authors: Kyo Jin An, Bukyo Seo, Young-Chul Park
Abstract:
The current trend in car market is increase of parts of automobile and weight in vehicle. It comes from improvement of vehicle performance. Outer tie rod is a part of component of steering system and it is lighter than the others. But, weight lightening is still required for improvement of car mileage. So, we have presented a model of aluminized outer tie rod, but the process of fabrication has to be checked to manufacture the product. Therefore, we have anticipated forming load, die stress and abrasion to use the program of forging interpretation in the part of hot forging process of outer tie rod in this study. Also, we have implemented the experiments design to use the table of orthogonal arrays to reduce the forming load.Keywords: forming load, hot forging, orthogonal array, outer tie rod (OTR), multi–step forging
Procedia PDF Downloads 43318486 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 1718485 Women Learning in Creative Project Based Learning of Engineering Education
Authors: Jui Hsuan Hung, Jeng Yi Tzeng
Abstract:
Engineering education in the higher education is always male dominated. Therefore, women learning in this environment is an important research topic for feminists, gender researchers and engineering education researchers, especially in the era of gender mainstreaming. The research topics are from the dialectical discussion of feminism and science development history, gender issues of science education, to the subject choice of female students. These researches enrich the field of gender study in engineering education but lack of describing the detailed images of women in engineering education, including their learning, obstacles, needs or feelings. Otherwise, in order to keep up with the industrial trends of emphasizing group collaboration, engineering education turns from traditional lecture to creative group inquiry pedagogy in recent years. Creative project based learning is one of the creative group inquiry pedagogy which the engineering education in higher education adopts often, and it is seen as a gender-inclusive pedagogy in engineering education. Therefore, in order to understand the real situation of women learning in engineering education, this study took place in a course (Introduction to Engineering) offered by the school of engineering of a university in Taiwan. This course is designed for freshman students to establish basic understanding engineering from four departments (Chemical Engineering, Power Mechanical Engineering, Materials Science, Industrial Engineering and Engineering Management). One section of this course is to build a Hydraulic Robot designed by the Department of Power Mechanical Engineering. 321 students in the school of engineering took this course and all had the reflection questionnaire. These students are divided into groups of 5 members to work on this project. The videos of process of discussion of five volunteered groups with different gender composition are analyzed, and six women of these five groups are interviewed. We are still on the process of coding and analyzing videos and the qualitative data, but several tentative findings have already emerged. (1) The activity models of groups of both genders are gender segregation, and not like women; men never be the ‘assistants’. (2) The culture of the group is developed by the major gender, but men always dominate the process of practice in all kinds of gender composition groups. (3) Project based learning is supposed to be a gender-inclusive learning model in creative engineering education, but communication obstacles between men and women make it less women friendly. (4) Gender identity, not professional identity, is adopted by these women while they interact with men in their groups. (5) Gender composition and project-based learning pedagogy are not the key factors for women learning in engineering education, but the gender conscience awareness is.Keywords: engineering education, gender education, creative project based learning, women learning
Procedia PDF Downloads 31318484 The Composting Process from a Waste Management Method to a Remediation Procedure
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa
Abstract:
Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.Keywords: agriculture, biopile, compost, soil clean-up, waste recycling
Procedia PDF Downloads 31018483 Internet of Things-Based Electric Vehicle Charging Notification
Authors: Nagarjuna Pitty
Abstract:
It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively.Keywords: electric, vehicle, charging, notification, IoT, supply, equipment
Procedia PDF Downloads 7118482 Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs
Authors: Yeshona Sewsynker
Abstract:
This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products.Keywords: pretreatment, lignocellulosic biomass, enzymatic hydrolysis, delignification
Procedia PDF Downloads 50018481 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C
Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim
Abstract:
T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.Keywords: T91, weld-joint, tempered martensite, self-tempering
Procedia PDF Downloads 37918480 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 184