Search results for: the warm-dry climate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2747

Search results for: the warm-dry climate

797 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee

Authors: Shohreh Moshiri, Hossein Alimohammadi

Abstract:

Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.

Keywords: adaptive architecture, building technology, case study, smart material systems

Procedia PDF Downloads 72
796 Solar PV System for Automatic Guideway Transit (AGT) System in BPSU Main Campus

Authors: Nelson S. Andres, Robert O. Aguilar, Mar O. Tapia, Meeko C. Masangcap, John Denver Catapang, Greg C. Mallari

Abstract:

This study focuses on exploring the possibility of using solar PV as an alternative for generating electricity to electrify the AGT System installed in BPSU Main Campus instead of using the power grid. The output of this study gives BPSU the option to invest on solar PV system to pro-actively respond to one of UN’s Sustainable Development Goals of having reliable, sustainable and modern energy sources to reduce energy pollution and climate change impact in the long run. Thus, this study covers the technical as well as the financial studies, which BPSU can also be used to outsource funding from different government agencies. For this study, the electrical design and requirements of the on-going DOST AGT system project are carefully considered. In the proposed design, the AGT station has installed with a rechargeable battery system where the energy harnessed by the solar PV panels installed on the rooftop of the station/NCEA building shall be directed to. The solar energy is then directly supplied to the electric double-layer capacitors (EDLC's) batteries and thus transmitted to other types of equipment in need. When the AGT is not in use, the harnessed energy may be used by NCEA building, thus, lessening the energy consumption of the building from the grid. The use of solar PV system with EDLC is compared with the use of an electric grid for the purpose of electrifying the AGT or the NCEA building (when AGT is not in use). This is to figure how much solar energy are accumulated by the solar PV to accommodate the need for coaches’ motors, lighting, air-conditioning units, door sensor, panel display, etc. The proposed PV Solar design, as well as the data regarding the charging and discharging of batteries and the power consumption of all AGT components, are simulated for optimization, analysis and validation through the use of PVSyst software.

Keywords: AGT, Solar PV, railway, EDLC

Procedia PDF Downloads 82
795 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 182
794 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia

Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden

Abstract:

The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.

Keywords: decarbonization, energy system modelling, renewable energy, sector coupling

Procedia PDF Downloads 133
793 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia

Authors: Aroma Elmina Martha

Abstract:

Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.

Keywords: abration, environmental damage, mining, shoreline

Procedia PDF Downloads 322
792 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy

Authors: Cameron Jones

Abstract:

Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.

Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism

Procedia PDF Downloads 44
791 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey

Authors: Çağan Alevkayali, Şermin Tağil

Abstract:

Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.

Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization

Procedia PDF Downloads 322
790 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 40
789 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 88
788 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process

Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida

Abstract:

The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.

Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique

Procedia PDF Downloads 82
787 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 377
786 Green Public Procurement in Open Access and Traditional Journals: A Comparative Bibliometric Analysis

Authors: Alonso-Cañadas J., Galán-Valdivieso F., Saraite-Sariene L., García-Tabuyo M., Alonso-Morales N.

Abstract:

Green Public Procurement (GPP) has recently gained attention in the academic and policy arenas since climate change has shown the need to be addressed by both private companies and public entities. Such growing interest motivates this article, aiming to explore the most influential journals, publishers, categories, and topics, as well as the recent trends and future research lines in GPP. Based on the Web of Science database, 578 articles from 2004 to February 2022 devoted to GPP are analyzed using Bibliometrix, an R-tool to perform bibliometric analysis, and Google’s Big Query and Data Studio. This article introduces a variety of findings. First, the most influential journals by far are “Journal of Cleaner Production” and “Sustainability,” differing in that the latter is open access while the former publishes via traditional subscription. This result also occurs regarding the main publishers (Elsevier and MDPI). These features lead us to split the sample into open-access journals and traditional journals to deepen into the similarities and differences between them, confirming that traditional journals exhibit a higher degree of influence in the literature than their open-access counterparts in terms of the number of documents, number of citations and impact (according to the H index). Second, this research also highlights the recent emergence of green-related terms (sustainable, environment) and, parallelly, the increase in categorizing GPP papers in “green” WoS categories, particularly since 2019. Finally, a number of related topics are emerging and will lead the research, such as food security, infrastructures, and implementation barriers of GPP.

Keywords: bibliometric analysis, green public procurement, open access, traditional journals

Procedia PDF Downloads 104
785 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty

Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos

Abstract:

Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.

Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning

Procedia PDF Downloads 208
784 Hybridization Potential of Oreochromis Niloticus (Nile Tilapia) with Oreochromis Jipe (Tilapia Jipe) in View of Lake Jipe Fishery Genetic Conservation

Authors: Mercy Chepkirui, Paul Orina, Priscilla Boera, Judith Achoki

Abstract:

Oreochromis jipe is a tropical freshwater bentho-pelagic fish belonging to the Cichlid family that is endemic to the Pangani River basin and Lake Jipe in Kenya and northern Tanzania, while Oreochromis niloticus inhabits the Lake Victoria basin with reported cases in Lake jipe too. Unlike O. jipe, Oreochromis niloticus is spreading across the globe due to its cultural potential. This, however, could cause genetic purity concerns in the event of cross-breeding among the tilapiines, which is already taking place in the wild. The study envisaged establishing the possibility of hybridization among the two species under aquaculture conditions and phenotypically informing the difference between pure and cross lines. Two hundred sixteen mature brooders weighing 100-120g were selected randomly, 108 of Oreochromis Jipe and 108 of Oreochromis niloticus; for each trial, 72 males and 144 females were distributed into 3 crosses, each grouped in triplicates (Oreochromis niloticus (♀) X Oreochromis niloticus(♂);Oreochromis niloticus (♂) X Oreochromis jipe ( ♀); Oreochromis jipe (♂) X Oreochromis niloticus (♀); Oreochromis jipe (♂) X Oreochromis jipe (♀). All trials had the F1 generation, which is currently undergoing growth trials and assessing its viability for the 2nd generation. The results indicated that Oreochromis niloticus has better growth, followed by crosses (Oreochromis niloticus X Oreochromis jipe) and, finally, pure line Oreochromis jipe. Further, pure Oreochromis jipe F1 demonstrated potential for aquaculture adoption despite its recent introduction into aquaculture; thus, this will help towards the conservation of indigenous fish species of Lake Jipe fishery, which is currently under the Internationa Union for Conservation of Nature Red List of endangered fish species. However, there is a need to inform the purity of existing Oreochromis jipe wild stocks to inform genetic material conservation.

Keywords: biodiversity, climate change, fisheries, oreochromis jipe, conservation

Procedia PDF Downloads 126
783 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 74
782 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria

Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad

Abstract:

Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.

Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort

Procedia PDF Downloads 221
781 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
780 Retrospective Evaluation of Vector-borne Infections in Cats Living in Germany (2012-2019)

Authors: I. Schäfer, B. Kohn, M. Volkmann, E. Müller

Abstract:

Introduction: Blood-feeding arthropods transmit parasitic, bacterial, or viral pathogens to domestic animals and wildlife. Vector-borne infections are gaining significance due to the increase of travel, import of domestic animals from abroad, and the changing climate in Europe. Aims of the study: The main objective of this retrospective study was to assess the prevalence of vector-borne infections in cats in which a ‘Feline Travel Profile’ had been conducted. Material and Methods: This retrospective study included test results from cats for which a ‘Feline Travel Profile’ established by LABOKLIN had been requested by veterinarians between April 2012 and December 2019. This profile contains direct detection methods via polymerase chain reaction (PCR) for Hepatozoon spp. and Dirofilaria spp. as well as indirect detection methods via immunofluorescence antibody test (IFAT) for Ehrlichia spp. and Leishmania spp. This profile was expanded to include an IFAT for Rickettsia spp. from July 2015 onwards. The prevalence of the different vector-borne infectious agents was calculated. Results: A total of 602 cats were tested using the ‘Feline Travel Profile’. Positive test results were as follows: Rickettsia spp. IFAT 54/442 (12.2%), Ehrlichia spp. IFAT 68/602 (11.3%), Leishmania spp. IFAT 21/602 (3.5%), Hepatozoon spp. PCR 51/595 (8.6%), and Dirofilaria spp. PCR 1/595 cats (0.2%). Co-infections with more than one pathogen could be detected in 22/602 cats. Conclusions: 170/602 cats (28.2%) were tested positive for at least one vector-borne pathogen. Infections with multiple pathogens could be detected in 3.7% of the cats. The data emphasizes the importance of considering vector-borne infections as potential differential diagnoses in cats.

Keywords: arthopod-transmitted infections, feline vector-borne infections, Germany, laboratory diagnostics

Procedia PDF Downloads 166
779 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: energy-saving thermal screen, greenhouse cover material, heat transfer coefficient, hot box

Procedia PDF Downloads 146
778 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings

Procedia PDF Downloads 129
777 Sustainable Renovation of Cultural Buildings Case Study: Red Bay National Historic Site, Canada

Authors: Richard Briginshaw, Hana Alaojeli, Javaria Ahmad, Hamza Gaffar, Nourtan Murad

Abstract:

Sustainable renovations to cultural buildings and sites require a high level of competency in the sometimes conflicting areas of social/historical demands, environmental concerns, and the programmatic and technical requirements of the project. A detailed analysis of the existing site, building and client program are critical to reveal both challenges and opportunities. This forms the starting point for the design process – empirical explorations that search for a balanced and inspired architectural solution to the project. The Red Bay National Historic Site on the Labrador Coast of eastern Canada is a challenging project to explore and resolve these ideas. Originally the site of a 16ᵗʰ century whaling station occupied by Basque sailors from France and Spain, visitors now experience this history at the interpretive center, along with the unique geography, climate, local culture and vernacular architecture of the area. Working with our client, Parks Canada, the project called for significant alterations and expansion to the existing facility due to an increase in the number of annual visitors. Sustainable aspects of the design are focused on sensitive site development, passive energy strategies such as building orientation and building envelope efficiency, active renewable energy systems, carefully considered material selections, water efficiency, and interiors that respond to human comfort and a unique visitor experience.

Keywords: sustainability, renovations and expansion, cultural project, architectural design, green building

Procedia PDF Downloads 168
776 Investigation and Analysis of Residential Building Energy End-Use Profile in Hot and Humid Area with Reference to Zhuhai City in China

Authors: Qingqing Feng, S. Thomas Ng, Frank Xu

Abstract:

Energy consumption in domestic sector has been increasing rapidly in China all along these years. Confronted with environmental challenges, the international society has made a concerted effort by setting the Paris Agreement, the Sustainable Development Goals, and the New Urban Agenda. Thus it’s very important for China to put forward reasonable countermeasures to boost building energy conservation which necessitates looking into the actuality of residential energy end-use profile and its influence factors. In this study, questionnaire surveys have been conducted in Zhuhai city in China, a typical city in hot summer warm winter climate zone. The data solicited mainly include the occupancy schedule, building’s information, residents’ information, household energy uses, the type, quantity and use patterns of appliances and occupants’ satisfaction. Over 200 valid samples have been collected through face-to-face interviews. Descriptive analysis, clustering analysis, correlation analysis and sensitivity analysis were then conducted on the dataset to understand the energy end-use profile. The findings identify: 1) several typical clusters of occupancy patterns and appliances utilization patterns; 2) the top three sensitive factors influencing energy consumption; 3) the correlations between satisfaction and energy consumption. For China with many different climates zones, it’s difficult to find a silver bullet on energy conservation. The aim of this paper is to provide a theoretical basis for multi-stakeholders including policy makers, residents, and academic communities to formulate reasonable energy saving blueprints for hot and humid urban residential buildings in China.

Keywords: residential building, energy end-use profile, questionnaire survey, sustainability

Procedia PDF Downloads 126
775 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China

Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao

Abstract:

Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.

Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake

Procedia PDF Downloads 139
774 Synthesis of Human Factors Theories and Industry 4.0

Authors: Andrew Couch, Nicholas Loyd, Nathan Tenhundfeld

Abstract:

The rapid emergence of technology observably induces disruptive effects that carry implications for internal organizational dynamics as well as external market opportunities, strategic pressures, and threats. An examination of the historical tendencies of technology innovation shows that the body of managerial knowledge for addressing such disruption is underdeveloped. Fundamentally speaking, the impacts of innovation are unique and situationally oriented. Hence, the appropriate managerial response becomes a complex function that depends on the nature of the emerging technology, the posturing of internal organizational dynamics, the rate of technological growth, and much more. This research considers a particular case of mismanagement, the BP Texas City Refinery explosion of 2005, that carries notable discrepancies on the basis of human factors principles. Moreover, this research considers the modern technological climate (shaped by Industry 4.0 technologies) and seeks to arrive at an appropriate conceptual lens by which human factors principles and Industry 4.0 may be favorably integrated. In this manner, the careful examination of these phenomena helps to better support the sustainment of human factors principles despite the disruptive impacts that are imparted by technological innovation. In essence, human factors considerations are assessed through the application of principles that stem from usability engineering, the Swiss Cheese Model of accident causation, human-automation interaction, signal detection theory, alarm design, and other factors. Notably, this stream of research supports a broader framework in seeking to guide organizations amid the uncertainties of Industry 4.0 to capture higher levels of adoption, implementation, and transparency.

Keywords: Industry 4.0, human factors engineering, management, case study

Procedia PDF Downloads 68
773 First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect

Authors: Kefale W. Yizengaw, Delele Worku Ayele, Jyh-Chiang Jiang

Abstract:

The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts.

Keywords: co-conversion, C–O coupling, doping, oxygen vacancy, microkinetic

Procedia PDF Downloads 115
772 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields

Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko

Abstract:

Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.

Keywords: methane, paddy fields, rice varieties, soil moisture

Procedia PDF Downloads 93
771 Improved Water Productivity by Deficit Irrigation: Implications for Water Saving in Orange, Olive and Vineyard Orchards in Arid Conditions of Tunisia

Authors: K. Nagaz, F. El Mokh, M. Masmoudi, N. Ben Mechlia, M. O. Baba Sy, G. Ghiglieri

Abstract:

Field experiments on deficit irrigation (DI) were performed in Médenine, Tunisia on drip-irrigated olive, orange and grapevine orchards during 2013 and 2014. Four irrigation treatments were compared: full irrigation (FI), which was irrigated at 100% of ETc for the whole season; two deficit irrigation (DI) strategies -DI75 and DI50- which received, respectively, 25 and 50% less water than FI; and traditional farming management (FM) - with water input much less than actually needed. The traditional farming (FM) applied 11, 18, 30 and 33% less water than the FI treatment, respectively, in orange, grapevine and table and oil olive orchards, indicating that the farmers practices represent a form of unintended deficit irrigation. Yield was reduced when deficit irrigation was applied and there were significant differences between DI75, DI50 and FM treatments. Significant differences were not observed between DI50 and FM treatments even though numerically smaller yield was observed in the former (DI50) as compared to the latter (FM). The irrigation water productivity (IWP) was significantly affected by irrigation treatments. The smallest IWP was recorded under the FI treatment, while the largest IWP was obtained under the deficit irrigation treatment (DI50). The DI50 and FM treatments reduced the economic return compared to the full treatment (FI), while the DI75 treatment resulted in a better economic return in respect to DI50 and FM. Full irrigation (FI) could be recommended for olive, orange and grapevine irrigation under the arid climate of Tunisia. Nevertheless, the treatment DI75 can be applied as a strategy under water scarcity conditions in commercial olive, orange and grapevine orchards allowing water savings up to 25% but with some reduction in yield and net return. The results would be helpful in adopting deficit irrigation in ways that enhance net financial returns.

Keywords: water productivity, deficit irrigation, drip irrigation, orchards

Procedia PDF Downloads 223
770 The Potential Effect of Sexual Selection on the Distal Genitalia Variability of the Simultaneously Hermaphroditic Land Snail Helix aperta in Bejaia/Kabylia/Algeria

Authors: Benbellil-Tafoughalt Saida, Tababouchet Meriem

Abstract:

Sexual selection is the most supported explanation for genital extravagance occurring in animals. In promiscuous species, population density, as well as climate conditions, may act on the sperm competition intensity, one of the most important mechanism of post-copulatory sexual selection. The present study is empirical testing of sexual selection's potential role on genitalia variation in the simultanuously hermaphroditic land snail Helixaperta (Pulmonata, Stylommatophora). The purpose was to detect the patterns as well as the origin of the distal genitalia variability and especially to test the potential effect of sexual selection. The study was performed on four populations, H. aperta, different in habitat humidity regimes and presenting variable densities, which were mostly low. The organs of interest were those involved in spermatophore production, reception, and manipulation. We examined whether the evolution of those organs is connected to sperm competition intensity which is traduced by both population density and microclimate humidity. We also tested the hypothesis that those organs evolve in response to shell size. The results revealed remarkable differences in both snails’ size and organs lengths between populations. In most cases, the length of genitalia correlated positively to snails’ body size. Interestingly, snails from the more humid microclimate presented the highest mean weight and shell dimensions comparing to those from the less humid microclimate. However, we failed to establish any relation between snail densities and any of the measured genitalia traits.

Keywords: fertilization pouch, helix aperta, land snails, reproduction, sperm storage, spermatheca

Procedia PDF Downloads 188
769 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content

Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran

Abstract:

Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.

Keywords: band, characterization, chlorophyll, hyperspectral, indices

Procedia PDF Downloads 153
768 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material

Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez

Abstract:

One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.

Keywords: CFD, FEA, FSI, natural fiber, VAWT

Procedia PDF Downloads 226