Search results for: modeling process
16297 Developmental Trajectories and Predictors of Adolescent Depression: A Short Term Study
Authors: Hyang Lim, Sungwon Choi
Abstract:
Many previous studies in area of adolescents' depression have used a longitudinal design. The previous studies have found that the developmental trajectory of them is only one. But it needs to be examined whether the trajectory is applied to all adolescents. Some factors in their home and/or school have an effect on adolescents' depression and more likely to be specific groups. The present study was a longitudinal study aimed to identify the trajectories and to explore the predictors of adolescents' depression. The study used Korean Children and Youth Panel Survey (KCYPS) data. In this study, 2,351 second and third-year of middle school and first of high school students' data was analyzed by using semi-parametric group modeling (SGM). There were 5 trajectory groups for adolescents; low depressed stables, low depressed risers, moderately depressed decreases, moderately depressed stables, severe depressed decreases. The predictors of adolescents' depression were parental abuse, parental neglect, annual family income, parental academic background, friendship at school, and teacher-student relationship at school. All predictors had the significant difference across trajectory group profile for adolescents. The findings of the present study recommend to promote the socioeconomic status and to train social skill for the interpersonal relationship at the home and school. And the results suggest that the proper prevention programs for each group in the middle adolescents that target selected factors may be helpful in reducing the level of depression.Keywords: adolescent, depression, KCYPS, school life, semi-parametric group-based modeling
Procedia PDF Downloads 44916296 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java
Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi
Abstract:
East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate
Procedia PDF Downloads 32116295 Computational Fluid Dynamics (CFD) Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: Worrapol Koranuntachai, Tonkid Chantrasmi, Udomkiat Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia PDF Downloads 13316294 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity
Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta
Abstract:
During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling
Procedia PDF Downloads 34216293 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD
Procedia PDF Downloads 20216292 Functional to Business Process Orientation in Business Schools
Authors: Sunitha Thappa
Abstract:
Business environment is a set of complex interdependent dimensions that corporates have to always be vigil in identifying the influential waves. Over the year business environment has evolved into a basket of uncertainties. Every organization strives to counter this dynamic nature of business environment by recurrently evaluating the primary and support activities of its value chain. This has led to companies redesigning their business models, reinvent business processes and operating procedure on unremitting basis. A few specific issues that are placed before the present day managers are breaking down the functional interpretation of any challenge that organizations confronts, reduction in organizational hierarchy and tackling the components of the value chain to retain their competitive advantage. It is how effectively managers detect the changes and swiftly reorient themselves to these changes that define their success or failure. Given the complexity of decision making in this dynamic environment, two important question placed before the B-schools of today. Firstly, are they grooming and nurturing managerial talent proficient enough to thrive in this multifaceted business environment? Secondly, are the management graduates walking through their portals, able to view challenges from a cross-functional perspective with emphasis to customer and process rather than hierarchy and functions. This paper focuses on the need for a process oriented approach to management education.Keywords: management education, pedagogy, functional, process
Procedia PDF Downloads 33216291 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 3416290 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 33016289 Economic Integration in Eurasia: Modeling of the Current and Future Architecture
Authors: M. G. Shilina
Abstract:
The prospects for political and economic development of the Eurasian space are currently discussed at both governmental and expert levels. New concepts actively proposed by the Eurasian governments require the analysis and search for effective implementation options. In the paper, an attempt to identify effective solutions to the problems surrounding the current economic integration of the Eurasian states is given on the basis of an interdisciplinary, comprehensive, structured analysis. The phenomenon is considered through the prism of the international law, world economy and politics, combined with the study of existing intergovernmental practice. The modeling method was taken as the basis for the research and is supplemented by legal and empirical methods. The detailed multi-level model of practical construction the 'Great Eurasia' (the GE) concept is proposed, the option for building a phased interaction in Eurasia is given through the prism of construction by the Eurasian Economic Union (the EAEU) as the main tool. The Shanghai Cooperation Organization (the SCO) is seen as the most promising element of the model. The SCO is capable of streamlining the formation of the GE and determine the transformation of Eurasia into a common economic space. Effective development of the economic integration between Eurasian states on the framework of the SCO is optimal. The SCO+ could be used as a platform for integration-integration processes formation. The creation of stable financial ties could become the basis for the possible formation of an expanded transregional integration platform. The paper concludes that the implementation of the proposed model could entail a gradual economic rapprochement of Eurasia and beyond.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, the silk road economic belt
Procedia PDF Downloads 12116288 Investigating Effective Factors on the Organizational Pathology of Knowledge Production in Islamic Azad University
Authors: Davoud Maleki, Neda Zamani
Abstract:
The purpose of this research was to investigate the factors affecting the organizational pathology of knowledge production in Islamic Azad University. The present research method is quantitative. It was a survey type and applied research in terms of its purpose. The statistical population of the present study included all full-time professors of the Islamic Azad Universities in the North, South, East, West and Central regions, including the Islamic Azad Universities of Sari, Isfahan, Kerman, Khorramabad and Shiraz, and their total number was 1389, based on the Cochran formula. 305 people were selected as the sample size by random sampling method. The research tool was a researcher-made questionnaire, whose validity was calculated from the professors' point of view and its reliability was calculated based on Cronbach's alpha and was 0.89. For data analysis, confirmatory factor analysis and structural equations were used with Smart3 Pls software. The findings showed that the variables of strategy, structure and process directly and the variable of strategy explained indirectly through the variables of structure and process 96.8% of the pathology of knowledge production. Also, structure 49.6% and process variable 58.4% explain the pathology of knowledge production. 38% of knowledge production changes related to the direct effect of strategy, 39% of knowledge production changes Related to the effect of structure, 32% of the changes in knowledge production are related to the direct effect of the process, 70.5% of the changes related to the structure are related to the direct effect of the strategy, 36.5% of the changes related to the process are related to the direct effect of the strategy, 46.3 Percentage of process variable changes It is related to the direct effect of the structure. According to the obtained results, it can be acknowledged that the pathology model of knowledge production in Islamic Azad University can be used as an effective model in the pathology of knowledge production and can improve the scientific level of knowledge producers.Keywords: pathology of knowledge production, strategic issues, process issues, Islamic Azad University
Procedia PDF Downloads 2016287 Secularism and Political Inclusion: Turkey in the 2000s
Authors: Edgar Sar
Abstract:
For more than a decade, secularism’s compatibility with religion has been called into question. Particularly, secular states’ exclusionary practices were raised to prove that secularism is not necessary for democracy. Meanwhile, with the debut of Turkey’s Justice and Development Party (AKP) in 2002, Turkish state’s approach to religion has gradually changed. It is argued in that presentation that this change has led Turkey to a process of de-secularization, which refers to a considerable regress in state’s inclusionary and pluralist credentials. In this regard, this study both reflects on the relationship between secularism and democracy within the context of Turkish experience and analyses the consequences of the process of de-secularization of state in Turkey. To analyze Turkish state’s changing approach to religion and measure the de-secularization of the state, the connection between state and religion will be examined in three levels: ends, institutions, and law and policies. The presentation will indicate that Turkish state’s connection with religion in all three levels significantly weakened its secular credentials, which at the same time risked state’s commitment to neutrality, freedom of conscience and equality. In this regard, the change in Turkish state’s approach to religion throughout the 2000s, which this study refers to as the process of the de-secularization of the state, also brought about a process of de-democratization for Turkey.Keywords: AKP, political inclusion, secularism, Turkey
Procedia PDF Downloads 34716286 Effects of Planned Pre-laboratory Discussion on Physics Students’ Acquisition of Science Process Skills in Kontagora, Niger State
Authors: Akano Benedict Ubawuike
Abstract:
This study investigated the effects of pre-laboratory discussion on physics students’ acquisition of science process skills. The study design was quasi-experimental and purposive sampling technique was applied in selecting two schools in Kontagora Town for the research based on the availability of a good physics laboratory. Intact classes already grouped by the school for the sake of small laboratory space and equipment, comprising Thirty (30) students, 15 for experimental group in School A and 15 for control in school B were the subjects for the research. The instrument used for data collection was the lesson prepared for pre – practical discussion and researcher made Science Process Skill Test (SPST ) and two (2) research questions, and two (2) research hypotheses were developed to guide the study. The data collected were analyzed using means and t-Test statistics at 0.05 level of significance. The study revealed that pre-laboratory discussion was found to be more efficacious in enhancing students’ acquisition of science process skills. It also revealed that gender, had no significant effect on students’ acquisition of science process skills. Based on the findings, it was recommended among others that teachers should encourage students to develop interest in practical activities by engaging them in pre-laboratory discussion and providing instructional materials that will challenge them to be actively involved during practical lessons. It is also recommended that Ministries of Education and professional organizations like Science Teachers' Association of Nigeria (STAN) should organize workshops, seminars and conferences for physics teachers and Physics concepts should be taught with practical activity so that the students will do science instead of learning about science.Keywords: physics, laboratory, discussion, students, acquisition, science process skills
Procedia PDF Downloads 13116285 The Changes in Consumer Behavior and the Decision-making Process After Covid-19 in Greece
Authors: Markou Vasiliki, Serdaris Panagiotis
Abstract:
The consumer behavior and decision-making process of consumers is a process that is affected by the factor of uncertainty. The onslaught of the Covid 19 pandemic has changed the consumer decision-making process in many ways. This change can be seen both in the buying process (how and where they shop) but also in the types of goods and services they are looking for. In addition, due to the mainly economic uncertainty that came from this event, but also the effects on both society and the economy in general, new consumer behaviors were created. Traditional forms of shopping are no longer a primary choice, consumers have turned to digital channels such as e-commerce and social media to fulfill needs. The purpose of this particular article is to examine how much the consumer's decision-making process has been affected after the pandemic and if consumer behavior has changed. An online survey was conducted to examine the change in decision making. Essentially, the demographic factors that influence the decision-making process were examined, as well as the social and economic factors. The research is divided into two parts. The first part included a literature review of the research that has been carried out to identify the factors, and the second part where the empirical investigation was carried out using a questionnaire and was done electronically with the help of Google Forms. The questionnaire was divided into several sections. They included questions about consumer behavior, but mainly about how they make decisions today, whether those decisions have changed due to the pandemic, and whether those changes are permanent. Also, for decision-making, goods were divided into essential products, high-tech products, transactions with the state and others. Αbout 500 consumers aged between 18 and 75 participated in the research. The data was processed with both descriptive statistics and econometric models. The results showed that the consumer behavior and decision-making process has changed. Now consumers widely use the internet for shopping, consumer behaviors and consumer patterns have changed. Social and economic factors play an important role. Income, gender and other factors were found to be statistically significant. In addition, it is worth noting that the percentage who made purchases during the pandemic through the internet for the first time was remarkable and related to age. Essentially, the arrival of the pandemic caused uncertainty for individuals, mainly financial, and this affected the decision-making process. In addition, shopping through the internet is now the first choice, especially among young people, and it seems that it is about to become established.Keywords: consumer behavior, decision making, COVID-19, Greece, behavior change
Procedia PDF Downloads 4716284 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)
Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine
Abstract:
In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities
Procedia PDF Downloads 9416283 Chatter Suppression in Boring Process Using Passive Damper
Authors: V. Prasannavenkadesan, A. Elango, S. Chockalingam
Abstract:
During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified.Keywords: boring, chatter, mass damping, passive damping
Procedia PDF Downloads 35016282 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 14616281 Neural Synchronization - The Brain’s Transfer of Sensory Data
Authors: David Edgar
Abstract:
To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)
Procedia PDF Downloads 12716280 Process Optimization for Albanian Crude Oil Characterization
Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici
Abstract:
Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.Keywords: TBP distillation curves, crude oil, optimization, simulation
Procedia PDF Downloads 30416279 Logic of the Prospect Theory: The Decision Making Process of the First Gulf War and the Crimean Annexation
Authors: Zhengyang Ma, Zhiyao Li, Jiayi Zhang
Abstract:
This article examines the prospect theory’s arguments about decision-making through two case studies, the First Gulf War and Russia’s annexation of Crimea. The article uses the methods of comparative case analysis and process tracing to investigate the prospect theory’s fundamental arguments. Through evidence derived from existing primary and secondary sources, this paper argues that both former U.S. President Bush and Russian President Putin viewed their situations as a domain of loss and made risky decisions to prevent further deterioration, which attests the arguments of the prospect theory. After the two case studies, this article also discusses how the prospect theory could be used in analyzing the decision-making process that led to the current Russia-Ukraine War.Keywords: the prospect theory, international relations, the first gulf war, the crimea crisis
Procedia PDF Downloads 12516278 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 14216277 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script
Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim
Abstract:
A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis
Procedia PDF Downloads 24116276 A New Criterion for Removal of Fouling Deposit
Abstract:
The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described.Keywords: cleaning, fouling, separation, criterion
Procedia PDF Downloads 45516275 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging
Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali
Abstract:
A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models
Procedia PDF Downloads 32516274 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface
Procedia PDF Downloads 35316273 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost
Authors: Yuan-Jye Tseng, Jia-Shu Li
Abstract:
To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.
Keywords: design for supply chain, design evaluation, functional design, Kansei design, fuzzy analytic network process, technique for order preference by similarity to ideal solution
Procedia PDF Downloads 31816272 Exercise and Aging Process Related to Oxidative Stress
Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova
Abstract:
Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.Keywords: oxidative stress, aging process, exercise, endothelial function
Procedia PDF Downloads 38716271 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies
Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun
Abstract:
Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.Keywords: process planning, weighted scheduling, weighted due-date assignment, simulated annealing, evolutionary strategies, hybrid searches
Procedia PDF Downloads 46216270 Environmental Impact Assessment of Conventional Tyre Manufacturing Process
Authors: G. S. Dangayach, Gaurav Gaurav, Alok Bihari Singh
Abstract:
The popularity of vehicles in both industrialized and developing economies led to a rise in the production of tyres. People have become increasingly concerned about the tyre industry's possible environmental impact in the last two decades. The life cycle assessment (LCA) methodology was used to assess the environmental impacts of industrial tyres throughout their life cycle, which included four stages: manufacture, transportation, consumption, and end-of-life. The majority of prior studies focused on tyre recycling and disposal. Only a few studies have been conducted on the environmental impact of tyre production process. LCA methodology was employed to determine the environmental impact of tyre manufacture process (gate to gate) at an Indian firm. Comparative analysis was also conducted to identify the environmental hotspots in various stages of tire manufacturing. This study is limited to gate-to-gate analysis of manufacturing processes with the functional unit of a single tyre weighing 50 kg. GaBi software was used to do both qualitative and quantitative analysis. Different environmental impact indicators are measured in terms of CO2, SO2, NOx, GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), POCP (photochemical oxidant formation potential), and HTP (toxic human potential). The results demonstrate that the major contributor to environmental pollution is electricity. The Banbury process has a very high negative environmental impact, which causes respiratory problems to workers and operators.Keywords: life cycle assessment (LCA), environmental impact indicators, tyre manufacturing process, environmental impact assessment
Procedia PDF Downloads 15316269 Process of Research, Development and Application of New Pelletizer
Authors: Ľubomír Šooš, Peter Križan, Juraj Beniak, Miloš Matúš
Abstract:
The success of introducing a new product on the market is the new principle of production, or progressive design, improved efficiency or high quality of manufactured products. Proportionally with the growth of interest in press-biofuels - pellets or briquettes, is also growing interest in the new design better, more efficiently machines produce pellets, briquettes or granules completely new shapes. Our department has for years dedicated to the development of new highly productive designs pressing machines and new optimized press-biofuels. In this field, we have more than 40 national and international patents. The aim of paper is description of the introduction of a new principle pelleting mill and the description of his process of research, development, manufacturing and testing to deployment into production.Keywords: compacting process, pellets mill, design, new conception, press-biofuels, patent, waste
Procedia PDF Downloads 38316268 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)
Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini
Abstract:
Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process
Procedia PDF Downloads 494