Search results for: biologically inspired algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4215

Search results for: biologically inspired algorithm

2265 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 153
2264 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 152
2263 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 273
2262 MicroRNA in Bovine Corpus Luteum during Early Pregnancy

Authors: Rreze Gecaj, Corina Schanzenbach, Benedikt Kirchner, Michael Pfaffl, Bajram Berisha

Abstract:

The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development.

Keywords: bovine, corpus luteum, microRNA, pregnancy, RNA-Seq

Procedia PDF Downloads 259
2261 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 100
2260 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model

Authors: Bokkasam Sasidhar, Ibrahim Aljasser

Abstract:

The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.

Keywords: scheduling, maximal flow problem, multiple arc network model, optimization

Procedia PDF Downloads 402
2259 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils

Authors: Elad Arad, Raz Jelinek, Hanna Rapaport

Abstract:

Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.

Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red

Procedia PDF Downloads 146
2258 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 147
2257 An Analytical Approach of Computational Complexity for the Method of Multifluid Modelling

Authors: A. K. Borah, A. K. Singh

Abstract:

In this paper we deal building blocks of the computer simulation of the multiphase flows. Whole simulation procedure can be viewed as two super procedures; The implementation of VOF method and the solution of Navier Stoke’s Equation. Moreover, a sequential code for a Navier Stoke’s solver has been studied.

Keywords: Bi-conjugate gradient stabilized (Bi-CGSTAB), ILUT function, krylov subspace, multifluid flows preconditioner, simple algorithm

Procedia PDF Downloads 528
2256 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 286
2255 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm

Authors: Shafait Hussain Ali

Abstract:

Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.

Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions

Procedia PDF Downloads 107
2254 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 79
2253 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 150
2252 Manipulator Development for Telediagnostics

Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania

Abstract:

This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.

Keywords: telediagnostics, elastic manipulator, impedance control, force measurement

Procedia PDF Downloads 477
2251 Boundary Motion by Curvature: Accessible Modeling of Oil Spill Evaporation/Dissipation

Authors: Gary Miller, Andriy Didenko, David Allison

Abstract:

The boundary of a region in the plane shrinks according to its curvature. A simple algorithm based upon this motion by curvature performed by a spreadsheet simulates the evaporation/dissipation behavior of oil spill boundaries.

Keywords: mathematical modeling, oil, evaporation, dissipation, boundary

Procedia PDF Downloads 510
2250 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique

Authors: S. Jalaja, A. M. Vijaya Prakash

Abstract:

Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.

Keywords: carry save adder Karatsuba multiplication, mid range Karatsuba multiplication, modified FFA and transposed filter, retiming

Procedia PDF Downloads 235
2249 Research Analysis of Urban Area Expansion Based on Remote Sensing

Authors: Sheheryar Khan, Weidong Li, Fanqian Meng

Abstract:

The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.

Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou

Procedia PDF Downloads 139
2248 Caste of Women: An Inquiry into the Differences in Inter-Caste Marriages in an Adivasi Samaj

Authors: Dhiraj Kumar

Abstract:

The paper attempts to argue that the regulation of the rural lower caste woman’s life-world is at the core of the reproduction of hierarchy in an Adivasi samaj (society). It has been established in studies on caste and Adivasi that the two societies are distinct and operate through different structures, norms, rituals, beliefs, etc. This is as opposed to the colonial and certain post-independence anthropology in/of India that collapsed the two into single categories for analysis. However, how the two seemingly different social structures affect each other has attracted little attention. The paper is inspired by an action-research at Gadh-Bansla, an Adivasi village in the Kanker district of Chhattisgarh that houses different caste groups – OBCs and SCs, as well as two different Adivasi groups: Gond and Halba. The action-research, taken place across a year, has worked with six families of the different groups present (i.e., Gond, Halba, OBCs, and SCs) in which inter-caste marriages have taken place. Through in-depth interviews and free association discussions with these six families, the paper presents the ways in which the samaj and caste society have interacted. It has been observed that there is a difference in treatment in marriages between a lower caste woman marrying into an upper caste or Halba household, and an upper caste or Halba woman marrying into a lower caste household. While the upper caste woman is easily accepted into the Adivasi samaj and the husband’s family, the same does not hold true for the lower caste woman. The lower caste woman has to face humiliation through untouchability, fine on the family, or in some cases excommunication of the couple. The paper concludes with a need to use caste as a central analytic to understand gender discrimination even in Adivasi contexts.

Keywords: caste, Adivasi, Samaj, humiliation, woman

Procedia PDF Downloads 157
2247 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
2246 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
2245 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 503
2244 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
2243 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 225
2242 A Computationally Intelligent Framework to Support Youth Mental Health in Australia

Authors: Nathaniel Carpenter

Abstract:

Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.

Keywords: artificial intelligence, information systems, machine learning, youth mental health

Procedia PDF Downloads 110
2241 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 364
2240 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds

Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya

Abstract:

Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.

Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS

Procedia PDF Downloads 505
2239 Sexual Health Experiences of Older Men: Health Care Professionals' Perspectives

Authors: Andriana E. Tran, Anna Chur-Hansen

Abstract:

Sexual health is an important aspect of overall wellbeing. This study aimed to explore the sexual health experiences of men aged 50 years and over from the perspective of health care professional participants who were specializing in sexual health care and who consulted with older men. A total of ten interviews were conducted. Eleven themes were identified regarding men’s experiences with sexual health care as reported by participants. 1) Biologically focused: older male clients focus largely on the biological aspect of their sexual health without consideration of other factors which might affect their functioning. 2) Psychological concerns: there is an interaction between mental and sexual health but older male clients do not necessarily see this. 3) Medicalization of sexual functioning: advances in medicine that aid with erectile difficulties which consequently mean that older men tend to favor a medical solution to their sexual concerns. 4) Masculine identity: sexual health concerns are linked to older male clients’ sense of masculinity. 5) Penile functionality: most concerns that older male clients have center on their penile functionality. 6) Relationships: many male clients seek sexual help as they believe it improves relationships. Conversely, having supportive partners may mean older male clients focus less on the physicality of sex. 7) Grief and loss: men experience grief and loss – the loss of their sexual functioning, grief from loss of a long-term partner, and loss of intimacy and privacy when moving from independent living to residential care. 8) Social stigma: older male clients experience stigma around aging sexuality and sex in general. 9) Help-seeking behavior: older male clients will usually seek mechanistic solution for biological sexual concerns, such as medication used for penile dysfunction. 10) Dismissed by health care professionals: many older male clients seek specialist sexual health care without the knowledge of their doctors as they feel dismissed due to lack of expertise, lack of time, and the doctor’s personal attitudes and characteristics. Finally, 11) Lack of resources: there is a distinct lack of resources and training to understand sexuality for healthy older men. These findings may inform future research, professional training, public health campaigns and policies for sexual health in older men.

Keywords: ageing, biopsychosocial model, men's health, sexual health

Procedia PDF Downloads 172
2238 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 545
2237 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks

Authors: Alaa Allakany, Koji Okamura

Abstract:

Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).

Keywords: multicast tree, software define networks, tabu search, OpenFlow

Procedia PDF Downloads 263
2236 Contemporary Art of Healing: New Generation of Shamanism Ritual

Authors: Yeaeun Jang

Abstract:

Shamanism, in general, has been steadily reinterpreted as research and art from cult, superstition, mysticism, and historical perspectives. Shamanism has existed throughout the five-thousand-year-old history of Korea, and it still actively is ongoing. It is interesting to observe how this tradition has had a profound impact on its current high-technology society. Many still ask Shamans for pieces of advice rituals for their problems to be solved. Historically, Korean shamanism has a strong connection and many similarities with Mongolian and Eastern Siberian Shamanism. 'God' is 'Nature'. 'Shaman' is a 'Mediator of communication chosen by God' and is a divine being who has entered the mysterious realm by challenging human limitations through harsh training. A shaman in ancient society used to be a leader of a group and entertainer who played various roles; king, counsellor, doctor, singer, dancer, painter, and performer. This artistic research focuses on the Shaman role as an artist with multiple mediums and reconstructing their ancient ritual into multimedia performing art that attempts to deal with traumatic memories in one’s life. This fusion style of contemporary ritual is mainly inspired by ‘Gut(굿)’, Korean Shamanism ritual. This comprehensive art needs several important elements; a shaman, a client, musicians, helpers, and the audience. It is a feast to gather people in a big circle. Nowadays, art has been divided into separate fields and developed, but before, there existed art of Synesthesia, whose boundaries were unclear that were not determined through which medium to express that abstract ideas. Multiple disciplines coexist and harmonise with each other. Studying shamanism ritual as an ancient form of performing art can create a warm, spiritual feast for everyone and remind us about ‘togetherness’.

Keywords: healing, multimedia art, performance art, shamanism, spirituality

Procedia PDF Downloads 100