Search results for: Residual Earnings Model (REM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17509

Search results for: Residual Earnings Model (REM)

15559 Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian

Abstract:

In this research, the changes in bubbles diameter and number that may occur due to the change in heat flux of pure water during pool boiling process. For this purpose, test equipment was designed and developed to collect test data. The bubbles were graded using Caliper Screen software. To calculate the growth and nucleation rates of bubbles under different fluxes, population balance model was employed. The results show that the increase in heat flux from q=20 kw/m2 to q=102 kw/m2 raised the growth and nucleation rates of bubbles.

Keywords: heat flux, bubble growth, bubble nucleation, population balance model

Procedia PDF Downloads 481
15558 Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model

Authors: Tanzeel Ur Rehman Khan, Franz Josef Behr, Phillip Davis

Abstract:

Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well.

Keywords: geospatial certification, open source, geospatial technology competency model, geoscience

Procedia PDF Downloads 569
15557 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 242
15556 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 281
15555 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle

Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.

Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine

Procedia PDF Downloads 249
15554 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih

Abstract:

Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.

Keywords: TRACE, safety analysis, BWR/6, severe accident

Procedia PDF Downloads 717
15553 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development

Authors: Sinisa J. Vukicevic

Abstract:

Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.

Keywords: urban growth model, scenario development, spatial indicators, Metronamica

Procedia PDF Downloads 96
15552 Developing a Knowledge-Based Lean Six Sigma Model to Improve Healthcare Leadership Performance

Authors: Yousuf N. Al Khamisi, Eduardo M. Hernandez, Khurshid M. Khan

Abstract:

Purpose: This paper presents a model of a Knowledge-Based (KB) using Lean Six Sigma (L6σ) principles to enhance the performance of healthcare leadership. Design/methodology/approach: Using L6σ principles to enhance healthcare leaders’ performance needs a pre-assessment of the healthcare organisation’s capabilities. The model will be developed using a rule-based approach of KB system. Thus, KB system embeds Gauging Absence of Pre-requisite (GAP) for benchmarking and Analytical Hierarchy Process (AHP) for prioritization. A comprehensive literature review will be covered for the main contents of the model with a typical output of GAP analysis and AHP. Findings: The proposed KB system benchmarks the current position of healthcare leadership with the ideal benchmark one (resulting from extensive evaluation by the KB/GAP/AHP system of international leadership concepts in healthcare environments). Research limitations/implications: Future work includes validating the implementation model in healthcare environments around the world. Originality/value: This paper presents a novel application of a hybrid KB combines of GAP and AHP methodology. It implements L6σ principles to enhance healthcare performance. This approach assists healthcare leaders’ decision making to reach performance improvement against a best practice benchmark.

Keywords: Lean Six Sigma (L6σ), Knowledge-Based System (KBS), healthcare leadership, Gauge Absence Prerequisites (GAP), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 170
15551 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 259
15550 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 434
15549 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 144
15548 Character Education Model for Early Childhood Based Javanese Culture

Authors: Rafika Bayu Kusumandari, Istyarini, Ispen Safrel

Abstract:

Character education will be more meaningful if carried out since early childhood. This is because early childhood education is the foundation of the formation of character. This study intends to find a model of character education in early childhood based on Javanese culture. In keeping with the focus of the study, long-term goals to be achieved through this research is to find once described the development of a model of character education in early childhood Javanese culture based in Semarang are then applied across early childhood education institutions in Semarang City. The specific objective of the study is: Describe the character models and management education in early childhood Java-based culture in Semarang City. The benefits of this research are; Provide an overview of the model and describe the management of character education in early childhood Java-based culture in Semarang City. Referring to the objectives of the research program was designed with a "Research and Development", meaning that a program of research followed by development programs for improvement or refinement. To produce a prototype model of character education in early childhood Java-based culture in the city, taken systematic measures in the form of the action, reflection, evaluation and innovation by applying qualitative research methods, descriptive, development, experimentation, and evaluation. This study aims to gain in-depth description of the model of character education in early childhood Java-based culture in the city of Semarang. The reason for the use of the use of qualitative methods researcher's knowledge, no study results and empirical research specifically about the model of character education in early childhood Java-based culture in the city of Semarang. On the implementation of character education early childhood adapted to the characteristics of each school and the emphasis of each agency arrangements for early childhood education, culture-based Java. Javanese culture should be introduced early in order not to erode the cultural lost outside the entrance as the era of globalization. In addition, Java is promoting a culture of courtesy and manners are very appropriate for the character formation of children of early age.

Keywords: education character, Javanese culture, childhood, character

Procedia PDF Downloads 394
15547 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 124
15546 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 429
15545 On the Well-Posedness of Darcy–Forchheimer Power Model Equation

Authors: Johnson Audu, Faisal Fairag

Abstract:

In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.

Keywords: porous media, power law, strong inertia, nonlinear, monotone type

Procedia PDF Downloads 320
15544 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 100
15543 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 484
15542 Building Organisational Culture That Stimulates Creativity and Innovation

Authors: Ala Hanetite

Abstract:

The purpose of this article is to present, by means of a model, the determinants of organisational culture which influence creativity and innovation. A literature study showed that a model, based on the open systems theory and the work of Schein, can offer a holistic approach in describing organisational culture. The relationship between creativity, innovation and culture is discussed in this context. Against the background of this model, the determinants of organisational culture were identified. The determinants are strategy, structure, support mechanisms, behaviour that encourages innovation, and open communication. The influence of each determinant on creativity and innovation is discussed. Values, norms and beliefs that play a role in creativity and innovation can either support or inhibit creativity and innovation depending on how they influence individual and group behaviour. This is also explained in the article.

Keywords: attitudes, creativity, innovation, organisational culture

Procedia PDF Downloads 595
15541 The Quality Improvement of Painting Assignments for Grade 4-6 Students by Using PDCA Cycle

Authors: Pawinee Sorawech

Abstract:

The purpose of this study was to investigate the quality improvement of painting assignments for grade 4-6 students by using PDCA cycle. This study employed a qualitative technique. Suan Sunandha Rajabhat University and its demonstration school were selected as the area of study. An in-depth interview was utilized. The findings revealed that model of PDCA cycle was a proper model to increase the quality of painting assignments for grade 4-6 students. The six steps of improvement included: studying the PDCA model, setting up a plan, determining the scope of work, creating a strategy, developing a quality for painting assignment, and coming up with a handbook for a quality improvement of painting assignment.

Keywords: quality, painting assignments, PDCA cycle, grade 4-6 students

Procedia PDF Downloads 485
15540 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 175
15539 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 272
15538 Numerical Investigation of the Electromagnetic Common Rail Injector Characteristics

Authors: Rafal Sochaczewski, Ksenia Siadkowska, Tytus Tulwin

Abstract:

The paper describes the modeling of a fuel injector for common rail systems. A one-dimensional model of a solenoid-valve-controlled injector with Valve Closes Orifice (VCO) spray was modelled in the AVL Hydsim. This model shows the dynamic phenomena that occur in the injector. The accuracy of the calibration, based on a regulation of the parameters of the control valve and the nozzle needle lift, was verified by comparing the numerical results of injector flow rate. Our model is capable of a precise simulation of injector operating parameters in relation to injection time and fuel pressure in a fuel rail. As a result, there were made characteristics of the injector flow rate and backflow.

Keywords: common rail, diesel engine, fuel injector, modeling

Procedia PDF Downloads 414
15537 Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys

Authors: S. Ilahi, M. Baira, F. Saidi, N. Yacoubi, L. Auvray, H. Maaref

Abstract:

Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.

Keywords: photothermal defelction technique, two layer model, BGaAs/GaAs alloys, boron composition

Procedia PDF Downloads 303
15536 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 138
15535 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 436
15534 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 152
15533 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 145
15532 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 368
15531 Clinician's Perspective of Common Factors of Change in Family Therapy: A Cross-National Exploration

Authors: Hassan Karimi, Fred Piercy, Ruoxi Chen, Ana L. Jaramillo-Sierra, Wei-Ning Chang, Manjushree Palit, Catherine Martosudarmo, Angelito Antonio

Abstract:

Background: The two psychotherapy camps, the randomized clinical trials (RCTs) and the common factors model, have competitively claimed specific explanations for therapy effectiveness. Recently, scholars called for empirical evidence to show the role of common factors in therapeutic outcome in marriage and family therapy. Purpose: This cross-national study aims to explore how clinicians, across different nations and theoretical orientations, attribute the contribution of common factors to therapy outcome. Method: A brief common factors questionnaire (CFQ-with a Cronbach’s Alpha, 0.77) was developed and administered in seven nations. A series of statistical analyses (paired-samples t-test, independent sample t-test, ANOVA) were conducted: to compare clinicians perceived contribution of total common factors versus model-specific factors, to compare each pair of common factors’ categories, and to compare clinicians from collectivistic nations versus clinicians from individualistic nation. Results: Clinicians across seven nations attributed 86% to common factors versus 14% to model-specific factors. Clinicians attributed 34% of therapeutic change to client’s factors, 26% to therapist’s factors, 26% to relationship factors, and 14% to model-specific techniques. The ANOVA test indicated each of the three categories of common factors (client 34%, therapist 26%, relationship 26%) showed higher contribution in therapeutic outcome than the category of model specific factors (techniques 14%). Clinicians with psychology degree attributed more contribution to model-specific factors than clinicians with MFT and counseling degrees who attributed more contribution to client factors. Clinicians from collectivistic nations attributed larger contributions to therapist’s factors (M=28.96, SD=12.75) than the US clinicians (M=23.22, SD=7.73). The US clinicians attributed a larger contribution to client’s factors (M=39.02, SD=1504) than clinicians from the collectivistic nations (M=28.71, SD=15.74). Conclusion: The findings indicate clinicians across the globe attributed more than two thirds of therapeutic change to CFs, which emphasize the training of the common factors model in the field. CFs, like model-specific factors, vary in their contribution to therapy outcome in relation to specific client, therapist, problem, treatment model, and sociocultural context. Sociocultural expectations and norms should be considered as a context in which both CFs and model-specific factors function toward therapeutic goals. Clinicians need to foster a cultural competency specifically regarding the divergent ways that CFs can be activated due to specific sociocultural values.

Keywords: common factors, model-specific factors, cross-national survey, therapist cultural competency, enhancing therapist efficacy

Procedia PDF Downloads 291
15530 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process

Procedia PDF Downloads 679