Search results for: total capacity algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15734

Search results for: total capacity algorithm

13814 Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones

Authors: K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham

Abstract:

Total hip replacement had been one of the most successful operations in hip arthritis surgery. The purpose of this research had been to develop a dynamic hip contact of Thai femoral bone to analyze the stress distribution on the implant and the strain distribution on the bone model under daily activities and compared with the static load simulation. The results showed the different of maximum von Mises stress 0.14 percent under walking and 0.03 percent under climbing stair condition and the different of equivalent total strain 0.52 percent under walking and 0.05 percent under climbing stair condition. The muscular forces should be evaluated with dynamic condition to reduce the maximum von Mises stress and equivalent total strain.

Keywords: dynamic loading, static load, hip prosthesis, Thai femur, femoral bone, finite element analysis

Procedia PDF Downloads 349
13813 Discriminant Analysis of Pacing Behavior on Mass Start Speed Skating

Authors: Feng Li, Qian Peng

Abstract:

The mass start speed skating (MSSS) is a new event for the 2018 PyeongChang Winter Olympics and will be an official race for the 2022 Beijing Winter Olympics. Considering that the event rankings were based on points gained on laps, it is worthwhile to investigate the pacing behavior on each lap that directly influences the ranking of the race. The aim of this study was to detect the pacing behavior and performance on MSSS regarding skaters’ level (SL), competition stage (semi-final/final) (CS) and gender (G). All the men's and women's races in the World Cup and World Championships were analyzed in the 2018-2019 and 2019-2020 seasons. As a result, a total of 601 skaters from 36 games were observed. ANOVA for repeated measures was applied to compare the pacing behavior on each lap, and the three-way ANOVA for repeated measures was used to identify the influence of SL, CS, and G on pacing behavior and total time spent. In general, the results showed that the pacing behavior from fast to slow were cluster 1—laps 4, 8, 12, 15, 16, cluster 2—laps 5, 9, 13, 14, cluster 3—laps 3, 6, 7, 10, 11, and cluster 4—laps 1 and 2 (p=0.000). For CS, the total time spent in the final was less than the semi-final (p=0.000). For SL, top-level skaters spent less total time than the middle-level and low-level (p≤0.002), while there was no significant difference between the middle-level and low-level (p=0.214). For G, the men’s skaters spent less total time than women on all laps (p≤0.048). This study could help to coach staff better understand the pacing behavior regarding SL, CS, and G, further providing references concerning promoting the pacing strategy and decision making before and during the race.

Keywords: performance analysis, pacing strategy, winning strategy, winter Olympics

Procedia PDF Downloads 193
13812 Matching on Bipartite Graphs with Applications to School Course Registration Systems

Authors: Zhihan Li

Abstract:

Nowadays, most universities use the course enrollment system considering students’ registration orders. However, the students’ preference level to certain courses is also one important factor to consider. In this research, the possibility of applying a preference-first system has been discussed and analyzed compared to the order-first system. A bipartite graph is applied to resemble the relationship between students and courses they tend to register. With the graph set up, we apply Ford-Fulkerson (F.F.) Algorithm to maximize parings between two sets of nodes, in our case, students and courses. Two models are proposed in this paper: the one considered students’ order first, and the one considered students’ preference first. By comparing and contrasting the two models, we highlight the usability of models which potentially leads to better designs for school course registration systems.

Keywords: bipartite graph, Ford-Fulkerson (F.F.) algorithm, graph theory, maximum matching

Procedia PDF Downloads 111
13811 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
13810 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 536
13809 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 251
13808 Nutritional Importance and Functional Properties of Baobab Leaves

Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola

Abstract:

The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.

Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range

Procedia PDF Downloads 72
13807 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B

Authors: Ceren Karaman, Onur Karaman

Abstract:

The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.

Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification

Procedia PDF Downloads 248
13806 Development of Construction Cost Optimization System Using Genetic Algorithm Method

Authors: Hyeon-Seung Kim, Young-Hwan Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang

Abstract:

The project budget at the planned stage might be changed by the insufficient government budget or the design change. There are many cases more especially in the case of a project performed for a long period of time. If the actual construction budget is insufficient comparing with the planned budget, the construction schedule should also be changed to match the changed budget. In that case, most project managers change the planned construction schedule by a heuristic approach without a reasonable consideration on the work priority. This study suggests an optimized methodology to modify the construction schedule according to the changed budget. The genetic algorithm was used to optimize the modified construction schedule within the changed budget. And a simulation system of construction cost histogram in accordance with the construction schedule was developed in the BIM (Building Information Modeling) environment.

Keywords: 5D, BIM, GA, cost optimization

Procedia PDF Downloads 588
13805 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.

Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning

Procedia PDF Downloads 157
13804 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 311
13803 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 222
13802 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities

Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh

Abstract:

Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.

Keywords: primary health care, health system, system domains, vital signs profile

Procedia PDF Downloads 131
13801 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 455
13800 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 284
13799 Using Genetic Algorithm to Organize Sustainable Urban Landscape in Historical Part of City

Authors: Shahab Mirzaean Mahabadi, Elham Ebrahimi

Abstract:

The urban development process in the historical urban context has predominately witnessed two main approaches: the first is the Preservation and conservation of the urban fabric and its value, and the second approach is urban renewal and redevelopment. The latter is generally supported by political and economic aspirations. These two approaches conflict evidently. The authors go through the history of urban planning in order to review the historical development of the mentioned approaches. In this article, various values which are inherent in the historical fabric of a city are illustrated by emphasizing on cultural identity and activity. In the following, it is tried to find an optimized plan which maximizes economic development and minimizes change in historical-cultural sites simultaneously. In the proposed model, regarding the decision maker’s intention, and the variety of functions, the selected zone is divided into a number of components. For each component, different alternatives can be assigned, namely, renovation, refurbishment, destruction, and change in function. The decision Variable in this model is to choose an alternative for each component. A set of decisions made upon all components results in a plan. A plan developed in this way can be evaluated based on the decision maker’s point of view. That is, interactions between selected alternatives can make a foundation for the assessment of urban context to design a historical-cultural landscape. A genetic algorithm (GA) approach is used to search for optimal future land use within the historical-culture landscape for a sustainable high-growth city.

Keywords: urban sustainability, green city, regeneration, genetic algorithm

Procedia PDF Downloads 69
13798 Resource-Constrained Heterogeneous Workflow Scheduling Algorithms in Heterogeneous Computing Clusters

Authors: Lei Wang, Jiahao Zhou

Abstract:

The development of heterogeneous computing clusters provides a strong computility guarantee for large-scale workflows (e.g., scientific computing, artificial intelligence (AI), etc.). However, the tasks within large-scale workflows have also gradually become heterogeneous due to different demands on computing resources, which leads to the addition of a task resource-restricted constraint to the workflow scheduling problem on heterogeneous computing platforms. In this paper, we propose a heterogeneous constrained minimum makespan scheduling algorithm based on the idea of greedy strategy, which provides an efficient solution to the heterogeneous workflow scheduling problem in a heterogeneous platform. In this paper, we test the effectiveness of our proposed scheduling algorithm by randomly generating heterogeneous workflows with heterogeneous computing platform, and the experiments show that our method improves 15.2% over the state-of-the-art methods.

Keywords: heterogeneous computing, workflow scheduling, constrained resources, minimal makespan

Procedia PDF Downloads 35
13797 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 122
13796 Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)

Authors: Ravi Prakash

Abstract:

The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results.

Keywords: hydrogen storage, metal hydrides, bcc alloy, heat treatment

Procedia PDF Downloads 76
13795 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)

Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida

Abstract:

Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.

Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction

Procedia PDF Downloads 394
13794 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 266
13793 Computer Aided Shoulder Prosthesis Design and Manufacturing

Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan

Abstract:

The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.

Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing

Procedia PDF Downloads 156
13792 Effect of Neem (Aziradicta Indica) Leaf Meal on Growth Performance, Haematology and Serum Biochemistry Indices of Broilers Not Administered Vaccines and Antibiotics

Authors: Ugwuowo Leonard Chidi, Oparaji Chetachukwu Jecinta., Ogidi Chibuzor Agafenachukwu, Onuoha Rebecca Obianuju

Abstract:

This experiment was conducted to investigate the growth performance, haematology and serum biochemistry indices of broiler birds fed diets containing Neem leaf meal. A total of 96 unsexed day-old broiler birds were allocated to four treatments of T1, T2, T3 and T4 and replicated three times with eight birds per replicate in a Completely Randomized Design. The treatments were diets containing 2.0, 4.0, 6.0 and 8.0% Neem leaf meal respectively. Growth performances, packed cell volume, red blood cell count, haemoglobin, white blood cell count, lymphocytes, mean corpuscular volume, mean corpuscular haemoglobin concentration, platelet count, aspartate amino transaminase, alanine amino transaminase, alkaline phosphate, cholesterol, albumin, globulin, urea, glucose, total protein and creatinine were evaluated. Results showed that there were no significant differences (P>0.05) in all the growth performance parameters among the treatments. The results of the experiment showed that there were significant differences (P<0.05) in all the heamatological and serum biochemistry parameters at finisher phases. Mean corpuscular volume, white blood cell count, lymphocytes, red blood cell count, haemoglobin, platelet count, creatinine and triglyceride increased and were highest in treatment two while treatment four had the least values in mean corpuscular volume, urea, white blood cell, haemoglobin and triglyceride. This implies that the levels of inclusion of Neem leaf meal in this experiment did not affect the growth performance of the broiler chicks but the haematological and serum biochemistry indices were affected. Treatment two with a 4% inclusion level of Neem leaf meal has shown the capacity to replace vaccines and antibiotics in broilers due to the positive effects it had on both the haematological and serum biochemistry.

Keywords: leaf meal, broiler, Aziradicta indica, serum biochemistry, haematology

Procedia PDF Downloads 76
13791 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 411
13790 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 160
13789 Simulation and Analysis of Inverted Pendulum Controllers

Authors: Sheren H. Salah

Abstract:

The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.

Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)

Procedia PDF Downloads 555
13788 Network Functions Virtualization-Based Virtual Routing Function Deployment under Network Delay Constraints

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

NFV-based network implements a variety of network functions with software on general-purpose servers, and this allows the network operator to select any capabilities and locations of network functions without any physical constraints. In this paper, we evaluate the influence of the maximum tolerable network delay on the virtual routing function deployment guidelines which the authors proposed previously. Our evaluation results have revealed the following: (1) the more the maximum tolerable network delay condition becomes severe, the more the number of areas where the route selection function is installed increases and the total network cost increases, (2) the higher the routing function cost relative to the circuit bandwidth cost, the increase ratio of total network cost becomes larger according to the maximum tolerable network delay condition.

Keywords: NFV (Network Functions Virtualization), resource allocation, virtual routing function, minimum total network cost

Procedia PDF Downloads 247
13787 Banking Performance and Political Economy: Using ARDL Model

Authors: Marwen Ghouil, Jamel Eddine Mkadmi

Abstract:

Banking performance is the pillar and goal of all banking activity and its impact on economic policy. First, researchers defined the principles for assessing and modeling bank performance, and then theories and models explaining bank performance were developed. The importance of credit as a means of financing businesses in most developing countries has led to questions about the effects of financial liberalisation on increased banking competition. In Tunisia, as in many other countries, the liberalization of financial services in general and of banks' activities has not ceased to evolve. The objective of this paper is to examine the determinants of banking performance for 8 Tunisian banks and their impact on economic policy during the Arab Spring. We used cointegration analysis and the ARDL Panel model, explaining using total assets, bank credits, guarantees, and bank size as performance drivers. The correlation analysis shows that there is a positive correlation relationship between total assets, bank credits, guarantees, and bank size and bank performance. Long-term empirical results show that bank loans, guarantees, bank size, and total assets have a positive and significant impact on bank performance. This means that bank credits, guarantees, bank size, and total assets are very important determinants of bank performance in Tunisia.

Keywords: bank performance, economic policy, finance, economic

Procedia PDF Downloads 134
13786 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls

Authors: Ibrahim Aydogdu, Alper Akin

Abstract:

In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.

Keywords: bio geography, meta-heuristic search, optimization, retaining wall

Procedia PDF Downloads 400
13785 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 125