Search results for: tensor deep stacking neural networks
3532 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks
Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi
Abstract:
Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks
Procedia PDF Downloads 5293531 Lower Limb Oedema in Beckwith-Wiedemann Syndrome
Authors: Mihai-Ionut Firescu, Mark A. P. Carson
Abstract:
We present a case of inferior vena cava agenesis (IVCA) associated with bilateral deep venous thrombosis (DVT) in a patient with Beckwith-Wiedemann syndrome (BWS). In adult patients with BWS presenting with bilateral lower limb oedema, specific aetiological factors should be considered. These include cardiomyopathy and intraabdominal tumours. Congenital malformations of the IVC, through causing relative venous stasis, can lead to lower limb oedema either directly or indirectly by favouring lower limb venous thromboembolism; however, they are yet to be reported as an associated feature of BWS. Given its life-threatening potential, the prompt initiation of treatment for bilateral DVT is paramount. In BWS patients, however, this can prove more complicated. Due to overgrowth, the above-average birth weight can continue throughout childhood. In this case, the patient’s weight reached 170 kg, impacting on anticoagulation choice, as direct oral anticoagulants have a limited evidence base in patients with a body mass above 120 kg. Furthermore, the presence of IVCA leads to a long-term increased venous thrombosis risk. Therefore, patients with IVCA and bilateral DVT warrant specialist consideration and may benefit from multidisciplinary team management, with hematology and vascular surgery input. Conclusion: Here, we showcased a rare cause for bilateral lower limb oedema, respectively bilateral deep venous thrombosis complicating IVCA in a patient with Beckwith-Wiedemann syndrome. The importance of this case lies in its novelty, as the association between IVC agenesis and BWS has not yet been described. Furthermore, the treatment of DVT in such situations requires special consideration, taking into account the patient’s weight and the presence of a significant, predisposing vascular abnormality.Keywords: Beckwith-Wiedemann syndrome, bilateral deep venous thrombosis, inferior vena cava agenesis, venous thromboembolism
Procedia PDF Downloads 2353530 Decision Support System for the Management and Maintenance of Sewer Networks
Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar
Abstract:
This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling
Procedia PDF Downloads 6383529 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 213528 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 1743527 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 113526 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 983525 Factorial Design Analysis for Quality of Video on MANET
Authors: Hyoup-Sang Yoon
Abstract:
The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2
Procedia PDF Downloads 4143524 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement
Procedia PDF Downloads 1233523 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 1233522 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission
Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan
Abstract:
As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster
Procedia PDF Downloads 2093521 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 4463520 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid
Procedia PDF Downloads 4453519 Experimental Evaluation of UDP in Wireless LAN
Authors: Omar Imhemed Alramli
Abstract:
As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.Keywords: TCP, UDP, IPERF, wireless LAN
Procedia PDF Downloads 3543518 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 673517 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 163516 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains
Authors: Christian Angerer, Markus Lienkamp
Abstract:
Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx
Procedia PDF Downloads 4173515 Colorectal Resection in Endometriosis: A Study on Conservative Vascular Approach
Authors: A. Zecchin, E. Vallicella, I. Alberi, A. Dalle Carbonare, A. Festi, F. Galeone, S. Garzon, R. Raffaelli, P. Pomini, M. Franchi
Abstract:
Introduction: Severe endometriosis is a multiorgan disease, that involves bowel in 31% of cases. Disabling symptoms and deep infiltration can lead to bowel obstruction: surgical bowel treatment may be needed. In these cases, colorectal segment resection is usually performed by inferior mesenteric artery ligature, as radically as for oncological surgery. This study was made on surgery based on intestinal vascular axis’ preservation. It was assessed postoperative complications risks (mainly rate of dehiscence of intestinal anastomoses), and results were compared with the ones found in literature about classical colorectal resection. Materials and methods: This was a retrospective study based on 62 patients with deep infiltrating endometriosis of the bowel, which undergo segmental resection with intestinal vascular axis preservation, between 2013 and 2016. It was assessed complications related to the intervention both during hospitalization and 30-60 days after resection. Particular attention was paid to the presence of anastomotic dehiscence. 52 patients were finally telephonically interviewed in order to investigate the presence or absence of intestinal constipation. Results and Conclusion: Segmental intestinal resection performed in this study ensured a more conservative vascular approach, with lower rate of anastomotic dehiscence (1.6%) compared to classical literature data (10.0% to 11.4% ). No complications were observed regarding spontaneous recovery of intestinal motility and bladder emptying. Constipation in some patients, even after years of intervention, is not assessable in the absence of a preoperative constipation state assessment.Keywords: anastomotic dehiscence, deep infiltrating endometriosis, colorectal resection, vascular axis preservation
Procedia PDF Downloads 2043514 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing
Authors: John Eric C. Bargas, Maria Cecilia M. Marcos
Abstract:
One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing
Procedia PDF Downloads 493513 Cyber-Social Networks in Preventing Terrorism: Topological Scope
Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito
Abstract:
It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.Keywords: complex network platform, counterterrorism, information sharing topology, social bots
Procedia PDF Downloads 1643512 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression
Authors: J. S. Saini, P. P. K. Sandhu
Abstract:
The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control
Procedia PDF Downloads 3383511 Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati
Authors: Maria M. Giannakou, Athanasios K. Ziliaskopoulos
Abstract:
Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard.Keywords: cost benefit analysis, knapsack problem, natural gas distribution network, risk management, risk mitigation
Procedia PDF Downloads 2953510 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1443509 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction
Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand
Abstract:
Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids
Procedia PDF Downloads 1793508 A Linearly Scalable Family of Swapped Networks
Authors: Richard Draper
Abstract:
A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology
Procedia PDF Downloads 1223507 The Relation Between Social Class, Race Homophily and Mental Health Outcomes of Black College Students
Authors: Omari W. Keeles
Abstract:
Attention to social class and race processes could illuminate within- group differences in Black students' experiences that help explain variation in adjustment. Of interest is how social class relates to development of intragroup connections with other Black students on campus in ways that promote or inhibit well-being. The present study’s findings suggest that students from lower class backgrounds may be more restrictive or limited in opportunities around their intragroup friendship networks than more affluent students. Furthermore, Black social relationship networks were related to positive mental health adjustment important to healthy psychological functioning and development.Keywords: black students, social class, homophily, psychological adjustment
Procedia PDF Downloads 4503506 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 3743505 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks
Authors: Amira Zrelli, Tahar Ezzedine
Abstract:
Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.Keywords: CTP, WSN, SHM, routing protocol
Procedia PDF Downloads 2963504 A Nonlinear Dynamical System with Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model
Procedia PDF Downloads 2543503 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 197