Search results for: semiconductor optical amplifier
183 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection
Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol
Abstract:
The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress
Procedia PDF Downloads 225182 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 92181 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber
Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen
Abstract:
Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption
Procedia PDF Downloads 360180 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis
Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu
Abstract:
Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter
Procedia PDF Downloads 167179 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 270178 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 247177 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami
Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe
Abstract:
Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements
Procedia PDF Downloads 191176 Viability of EBT3 Film in Small Dimensions to Be Use for in-Vivo Dosimetry in Radiation Therapy
Authors: Abdul Qadir Jangda, Khadija Mariam, Usman Ahmed, Sharib Ahmed
Abstract:
The Gafchromic EBT3 film has the characteristic of high spatial resolution, weak energy dependence and near tissue equivalence which makes them viable to be used for in-vivo dosimetry in External Beam and Brachytherapy applications. The aim of this study is to assess the smallest film dimension that may be feasible for the use in in-vivo dosimetry. To evaluate the viability, the film sizes from 3 x 3 mm to 20 x 20 mm were calibrated with 6 MV Photon and 6 MeV electron beams. The Gafchromic EBT3 (Lot no. A05151201, Make: ISP) film was cut into five different sizes in order to establish the relationship between absorbed dose vs. film dimensions. The film dimension were 3 x 3, 5 x 5, 10 x 10, 15 x 15, and 20 x 20 mm. The films were irradiated on Varian Clinac® 2100C linear accelerator for dose range from 0 to 1000 cGy using PTW solid water phantom. The irradiation was performed as per clinical absolute dose rate calibratin setup, i.e. 100 cm SAD, 5.0 cm depth and field size of 10x10 cm2 and 100 cm SSD, 1.4 cm depth and 15x15 cm2 applicator for photon and electron respectively. The irradiated films were scanned with the landscape orientation and a post development time of 48 hours (minimum). Film scanning accomplished using Epson Expression 10000 XL Flatbed Scanner and quantitative analysis carried out with ImageJ freeware software. Results show that the dose variation with different film dimension ranging from 3 x 3 mm to 20 x 20 mm is very minimal with a maximum standard deviation of 0.0058 in Optical Density for a dose level of 3000 cGy and the the standard deviation increases with the increase in dose level. So the precaution must be taken while using the small dimension films for higher doses. Analysis shows that there is insignificant variation in the absorbed dose with a change in film dimension of EBT3 film. Study concludes that the film dimension upto 3 x 3 mm can safely be used up to a dose level of 3000 cGy without the need of recalibration for particular dimension in use for dosimetric application. However, for higher dose levels, one may need to calibrate the films for a particular dimension in use for higher accuracy. It was also noticed that the crystalline structure of the film got damage at the edges while cutting the film, which can contribute to the wrong dose if the region of interest includes the damage area of the filmKeywords: external beam radiotherapy, film calibration, film dosimetery, in-vivo dosimetery
Procedia PDF Downloads 494175 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis
Authors: Sara Segura, Diego Nuñez, Miryam Villamil
Abstract:
In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis
Procedia PDF Downloads 294174 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)
Authors: Sultan Ben Jaber
Abstract:
Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor
Procedia PDF Downloads 70173 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties
Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic
Abstract:
Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.Keywords: nanomaterials, industrial waste, chile, recycling
Procedia PDF Downloads 96172 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray
Authors: Tahani Mashikhi
Abstract:
Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.Keywords: deposit, dye, electrospray, TiO₂, XPS
Procedia PDF Downloads 45171 Periodicity of Solutions to Impulsive Equations
Authors: Jin Liang, James H. Liu, Ti-Jun Xiao
Abstract:
It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution
Procedia PDF Downloads 251170 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 311169 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean
Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi
Abstract:
The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean
Procedia PDF Downloads 229168 Study of Growth Behavior of Some Bacterial Fish Pathogens to Combined Selected Herbal Essential Oil
Authors: Ashkan Zargar, Ali Taheri Mirghaed, Zein Talal Barakat, Alireza Khosravi, Hamed Paknejad
Abstract:
With the increase of bacterial resistance to the chemical antibiotics, replacing it with ecofriendly herbal materials and with no adverse effects in the host body is very important. Therefore, in this study, the effect of combined essential oil (Thymus vulgaris-Origanum magorana and Ziziphora clinopodioides) on the growth behavior of Yersinia ruckeri, Aeromonas hydrophila and Lactococcus garvieae was evaluated. The compositions of the herbal essential oils used in this study were determined by gas chromatography-mass spectrometry (GC-MS) while, the investigating of antimicrobial effects was conducted by the agar-disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and bacterial growth curves determination relied on optical density (OD) at 630 nm. The main compounds were thymol (40.60 %) and limonene (15.98 %) for Thymus vulgaris while carvacrol (57.86 %) and thymol (13.54 %) were the major compounds in Origanum magorana. As regards Ziziphora clinopodiodes, α-pinene (22.6 %) and carvacrol (21.1 %) represented the major constituents. Concerning Yersinia ruckeri, disc-diffusion results showed that t.O.z (50 % Origanum majorana) combined essential oil was presented the best inhibition zone (30.66 mm) but it was exhibited no significant differences with other tested commercial antibiotics except oxytetracycline (P <0/05). The inhibitory activity and the bactericidal effect of the t.O.z, unveiled by the MIC= 0.2 μL /mL and MBC= 1.6 μL /mL values, were clearly the best between all combined oils. The growth behaviour of Yersinia ruckeri was affected by this combined essential oil and changes in temperature and pH conditions affected herbal oil performance. As regard Aeromonas hydrophila, its results were so similar to Yersinia ruckeri results and t.O.z (50 % Origanum majorana) was the best between all combined oils (inhibition zone= 26 mm, MIC= 0.4 μL /mL and MBC= 3.2 μL /mL, combined essential oil was affected bacterial growth behavior). Also for Lactococcus garvieae, t.O.z (50 % Origanum majorana) was the best between all combined oils having the best inhibition zone= 20.66 mm, MIC= 0.8 μL /mL and MBC= 1.6 μL /mL and best effect on inhibiting bacterial growth. Combined herbal essential oils have a good and noticeable effect on the growth behavior of pathogenic bacteria in the laboratory, and by continuing research in the host, they may be a suitable alternative to control, prevent and treat diseases caused by these bacteria.Keywords: bacterial pathogen, herbal medicine, growth behavior, fish
Procedia PDF Downloads 71167 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes
Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka
Abstract:
Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering
Procedia PDF Downloads 301166 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes
Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe
Abstract:
Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides
Procedia PDF Downloads 276165 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model
Authors: Shreya Srivastava, Sagnik Dey
Abstract:
Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART
Procedia PDF Downloads 54164 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom
Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr
Abstract:
The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation
Procedia PDF Downloads 271163 Seroepidemiological Study of Toxoplasma gondii Infection in Women of Child-Bearing Age in Communities in Osun State, Nigeria
Authors: Olarinde Olaniran, Oluyomi A. Sowemimo
Abstract:
Toxoplasmosis is frequently misdiagnosed or underdiagnosed, and it is the third most common cause of hospitalization due to food-borne infection. Intra-uterine infection with Toxoplasma gondii due to active parasitaemia during pregnancy can cause severe and often fatal cerebral damage, abortion, and stillbirth of a fetus. The aim of the study was to investigate the prevalence of T. gondii infection in women of childbearing age in selected communities of Osun State with a view to determining the risk factors which predispose to the T. gondii infection. Five (5) ml of blood was collected by venopuncture into a plain blood collection tube by a medical laboratory scientist. Serum samples were separated by centrifuging the blood samples at 3000 rpm for 5 mins. The sera were collected with Eppendorf tubes and stored at -20°C analysis for the presence of IgG and IgM antibodies against T. gondii by commercially available enzyme-linked immunosorbent assay (ELISA) kit (Demeditec Diagnostics GmbH, Germany) conducted according to the manufacturer’s instructions. The optical densities of wells were measured by a photometer at a wavelength of 450 nm. Data collected were analysed using appropriate computer software. The overall seroprevalence of T. gondii among the women of child-bearing age in selected seven communities in Osun state was 76.3%. Out of 76.3% positive for Toxoplasma gondii infection, 70.0% were positive for anti- T. gondii IgG, and 32.3% were positive for IgM, and 26.7% for both IgG and IgM. The prevalence of T. gondii was lowest (58.9%) among women from Ile Ife, a peri-urban community, and highest (100%) in women residing in Alajue, a rural community. The prevalence of infection was significantly higher (P= 0.000) among Islamic women (87.5%) than in Christian women (70.8%). The highest prevalence (86.3%) was recorded in women with primary education, while the lowest (61.2%) was recorded in women with tertiary education (p =0.016). The highest prevalence (79.7%) was recorded in women that reside in rural areas, and the lowest (70.1%) was recorded in women that reside in peri-urban area (p=0.025). The prevalence of T. gondii infection was highest (81.4%) in women with one miscarriage, while the prevalence was lowest in women with no miscarriages (75.9%). The age of the women (p=0.042), Islamic religion (p=0.001), the residence of the women (p=0.001), and water source were all positively associated with T. gondii infection. The study concluded that there was a high seroprevalence of T. gondii recorded among women of child-bearing age in the study area. Hence, there is a need for health education and create awareness of the disease and its transmission to women of reproductive age group in general and pregnant women in particular to reduce the risk of T. gondii in pregnant women.Keywords: seroepidemiology, Toxoplasma gondii, women, child-bearing, age, communities, Ile -Ife, Nigeria
Procedia PDF Downloads 177162 A Stepwise Approach for Piezoresistive Microcantilever Biosensor Optimization
Authors: Amal E. Ahmed, Levent Trabzon
Abstract:
Due to the low concentration of the analytes in biological samples, the use of Biological Microelectromechanical System (Bio-MEMS) biosensors for biomolecules detection results in a minuscule output signal that is not good enough for practical applications. In response to this, a need has arisen for an optimized biosensor capable of giving high output signal in response the detection of few analytes in the sample; the ultimate goal is being able to convert the attachment of a single biomolecule into a measurable quantity. For this purpose, MEMS microcantilevers based biosensors emerged as a promising sensing solution because it is simple, cheap, very sensitive and more importantly does not need analytes optical labeling (Label-free). Among the different microcantilever transducing techniques, piezoresistive based microcantilever biosensors became more prominent because it works well in liquid environments and has an integrated readout system. However, the design of piezoresistive microcantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. It was found that the parameters that can be optimized to enhance the sensitivity of Piezoresistive microcantilever-based sensors are: cantilever dimensions, cantilever material, cantilever shape, piezoresistor material, piezoresistor doping level, piezoresistor dimensions, piezoresistor position, Stress Concentration Region's (SCR) shape and position. After a systematic analyzation of the effect of each design and process parameters on the sensitivity, a step-wise optimization approach was developed in which almost all these parameters were variated one at each step while fixing the others to get the maximum possible sensitivity at the end. At each step, the goal was to optimize the parameter in a way that it maximizes and concentrates the stress in the piezoresistor region for the same applied force thus get the higher sensitivity. Using this approach, an optimized sensor that has 73.5x times higher electrical sensitivity (ΔR⁄R) than the starting sensor was obtained. In addition to that, this piezoresistive microcantilever biosensor it is more sensitive than the other similar sensors previously reported in the open literature. The mechanical sensitivity of the final senior is -1.5×10-8 Ω/Ω ⁄pN; which means that for each 1pN (10-10 g) biomolecules attach to this biosensor; the piezoresistor resistivity will decrease by 1.5×10-8 Ω. Throughout this work COMSOL Multiphysics 5.0, a commercial Finite Element Analysis (FEA) tool, has been used to simulate the sensor performance.Keywords: biosensor, microcantilever, piezoresistive, stress concentration region (SCR)
Procedia PDF Downloads 571161 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids
Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis
Abstract:
Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures
Procedia PDF Downloads 327160 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 270159 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors
Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub
Abstract:
Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance
Procedia PDF Downloads 271158 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case
Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza
Abstract:
The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype
Procedia PDF Downloads 418157 Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation
Authors: Davoud Dorranian, Hajar Sadeghi, Elmira Solati
Abstract:
Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source.Keywords: carbon nanostructures, graphene, pulsed laser ablation, graphite
Procedia PDF Downloads 314156 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap
Authors: Nikolai N. Bogolubov, Andrey V. Soldatov
Abstract:
Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom
Procedia PDF Downloads 271155 Using Photogrammetric Techniques to Map the Mars Surface
Authors: Ahmed Elaksher, Islam Omar
Abstract:
For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.Keywords: mars, photogrammetry, MOLA, HiRISE
Procedia PDF Downloads 57154 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?
Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási
Abstract:
For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).Keywords: selenium, ICP-MS, food, food raw material
Procedia PDF Downloads 508