Search results for: mechanical seal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3784

Search results for: mechanical seal

1864 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 341
1863 Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat

Authors: Mandip Singh

Abstract:

Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented.

Keywords: Schrodinger-cat quantum states, macroscopic entanglement, macroscopic quantum fields, foundations of quantum physics

Procedia PDF Downloads 189
1862 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 308
1861 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 196
1860 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers

Authors: Qiong Rao, Xiongqi Peng

Abstract:

In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.

Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model

Procedia PDF Downloads 133
1859 Sumac Sprouts: From in Vitro Seed Germination to Chemical Characterization

Authors: Leto Leandra, Guaitini Caterina, Agosti Anna, Del Vecchio Lorenzo, Guarrasi Valeria, Cirlini Martina, Chiancone Benedetta

Abstract:

To the best of our knowledge, this study represents the first attempt to investigate the in vitro germination response of Rhus coriaria L., and its sprout chemical characterization. Rhus coriaria L., a species belonging to the Anacardiaceae family, is commonly called "sumac" and is cultivated, in different countries of the Mediterranean and the Middle East regions, to produce a spice with a sour taste, obtained from its dried and ground fruits. Moreover, since ancient times, many beneficial properties have been attributed to this plant that has been used, in the traditional medicine of several Asian countries, against various diseases, including liver and intestinal pathologies, ulcers and various inflammatory states. In the recent past, sumac was cultivated in the Southern regions of Italy to treat leather, but its cultivation was abandoned, and currently, sumac plants grow spontaneously in marginal areas. Recently, in Italy, the interest in this species has been growing again, thanks to its numerous properties; thus, it becomes imperative to deepen the knowledge of this plant. In this study, in order to set up an efficient in vitro seed germination protocol, sumac seeds collected from spontaneous plants grown in Sicily, an island in the South of Italy, were, firstly, subjected to different treatments, scarification (mechanical, physical and chemical), cold stratification and imbibition, to break their physical and physiological dormancy, then, treated seeds were in vitro cultured on media with different gibberellic acid (GA3) concentrations. Results showed that, without any treatment, only 5% of in vitro sown seeds germinated, while the germination percentage increased up to 19% after the mechanical scarification. A further significative improvement of germination percentages was recorded after the physical scarification, with (40.5%) or without (36.5%) 8 weeks of cold stratification, especially when seeds were sown on gibberellin enriched cultured media. Vitro-derived sumac sprouts, at different developmental stages, were chemically characterized, in terms of polyphenol and tannin content, as well as for their antioxidant activity, to evaluate this matrix as a potential novel food or as a source of bioactive compounds. Results evidenced how more developed sumac sprouts and, above all, their leaves are a wealthy source of polyphenols (78.4 GAE/g SS) and tannins (21.9 mg GAE/g SS), with marked antioxidant activity. The outcomes of this study will be of support the nursery sector and sumac growers in obtaining a higher number of plants in a shorter time; moreover, the sprout chemical characterization will contribute to the process of considering this matrix as a new source of bioactive compounds and tannins to be used in food and non-food sectors.

Keywords: bioactive compounds, germination pre-treatments, rhus coriaria l., tissue culture

Procedia PDF Downloads 104
1858 Sumac Sprouts: From in Vitro Seed Germination to Chemical Characterization

Authors: Leto Leandra, Guaitini Caterina, Agosti Anna, Del Vecchio Lorenzo, Guarrasi Valeria, Cirlini Martina, Chiancone Benedetta

Abstract:

To the best of our knowledge, this study represents the first attempt to investigate the in vitro germination response of Rhus coriaria L. and its sprout chemical characterization. Rhus coriaria L., a species belonging to the Anacardiaceae family, is commonly called "sumac” and is cultivated, in different countries of the Mediterranean and the Middle East regions, to produce a spice with a sour taste, obtained from its dried and ground fruits. Moreover, since ancient times, many beneficial properties have been attributed to this plant that has been used, in the traditional medicine of several Asian countries, against various diseases, including liver and intestinal pathologies, ulcers, and various inflammatory states. In the recent past, sumac was cultivated in the Southern regions of Italy to treat leather, but its cultivation was abandoned, and currently, sumac plants grow spontaneously in marginal areas. Recently, in Italy, the interest in this species has been growing again, thanks to its numerous properties; thus, it becomes imperative to deepen the knowledge of this plant. In this study, in order to set up an efficient in vitro seed germination protocol, sumac seeds collected from spontaneous plants grown in Sicily, an island in the South of Italy, were, firstly, subjected to different treatments, scarification (mechanical, physical and chemical), cold stratification and imbibition, to break their physical and physiological dormancy, then, treated seeds were in vitro cultured on media with different gibberellic acid (GA3) concentrations. Results showed that, without any treatment, only 5% of in vitro sown seeds germinated, while the germination percentage increased up to 19% after the mechanical scarification. A further significative improvement of germination percentages was recorded after the physical scarification, with (40.5%) or without (36.5%) 8 weeks of cold stratification, especially when seeds were sown on gibberellin enriched cultured media. Vitro-derived sumac sprouts, at different developmental stages, were chemically characterized, in terms of polyphenol and tannin content, as well as for their antioxidant activity, to evaluate this matrix as a potential novel food or as a source of bioactive compounds. Results evidenced how more developed sumac sprouts and, above all, their leaves are a wealthy source of polyphenols (78.4 GAE/g SS) and tannins (21.9 mg GAE/g SS), with marked antioxidant activity. The outcomes of this study will be of support the nursery sector and sumac growers in obtaining a higher number of plants in a shorter time; moreover, the sprout chemical characterization will contribute to the process of considering this matrix as a new source of bioactive compounds and tannins to be used in food and non-food sectors.

Keywords: bioactive compounds, germination pre-treatments, rhus coriaria l., tissue culture

Procedia PDF Downloads 101
1857 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition

Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee

Abstract:

Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.

Keywords: β-wollastonite, high density, MgSiO3, phase transition

Procedia PDF Downloads 581
1856 Numerical Modeling of a Retaining Wall in Soil Reinforced by Layers of Geogrids

Authors: M. Mellas, S. Baaziz, A. Mabrouki, D. Benmeddour

Abstract:

The reinforcement of massifs of backfill with horizontal layers of geosynthetics is an interesting economic solution, which ensures the stability of retaining walls. The mechanical behavior of reinforced soil by geosynthetic is complex, and requires studies and research to understand the mechanisms of rupture. The behavior of reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. The present study is interested in numerical modeling of a retaining wall in soil reinforced by horizontal layers of geogrids. This modeling makes use of the software FLAC3D. This work aims to analyze the effect of the length of the geogrid "L" where the soil massif is supporting a uniformly distributed surcharge "Q", taking into account the fixing elements rather than the layers of geogrids to the wall.

Keywords: retaining wall, geogrid, reinforced soil, numerical modeling, FLAC3D

Procedia PDF Downloads 484
1855 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 516
1854 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die

Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani

Abstract:

Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.

Keywords: die casting, finite element, flange, helical gearbox

Procedia PDF Downloads 367
1853 Study of Pottery And Glazed Canopic Vessels

Authors: Abdelrahman Mohamed

Abstract:

The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots.

Keywords: canopic jar, embalming, FTIR, GCMS, linen.

Procedia PDF Downloads 85
1852 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 87
1851 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 378
1850 [Keynote Talk]: Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little

Abstract:

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Keywords: by-products, inhibitory effect, mixture, photocatalytic oxidation

Procedia PDF Downloads 501
1849 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil

Procedia PDF Downloads 125
1848 Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys

Authors: A. Elrefaei

Abstract:

The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline.

Keywords: aluminum, CMT, mechanical, welding

Procedia PDF Downloads 232
1847 Me and My Selfie: Identity Building Through Self Representation in Social Media

Authors: Revytia Tanera

Abstract:

This research is a pilot study to examine the rise of selfie trend in dealing with individual self representation and identity building in social media. The symbolic interactionism theory is used as the concept of the desired self image, and Cooley’s looking glass-self concept is used to analyze the mechanical reflection of ourselves; how do people perform their “digital self” in social media. In-depth interviews were conducted in the study with a non-random sample who owns a smartphone with a front camera feature and are active in social media. This research is trying to find out whether the selfie trend brings any influence on identity building on each individual. Through analysis of interview results, it can be concluded that people take selfie photos in order to express themselves and to boost their confidence. This study suggests a follow up and more in depth analysis on identity and self representation from various age groups.

Keywords: self representation, selfie, social media, symbolic interaction, looking glass-self

Procedia PDF Downloads 297
1846 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 347
1845 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 407
1844 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties

Procedia PDF Downloads 489
1843 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour

Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi

Abstract:

The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.

Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading

Procedia PDF Downloads 476
1842 Characterization of Performance of Blocks Produced from Dredged Sample

Authors: Adebayo B., Omotehinse A. O.

Abstract:

The performance and characteristics of blocks produced from dredged sample was investigated. Blocks were produced using appropriate mixes of dredged sample and sharp sand. Some geotechnical properties (moisture content, grain size distribution) of the dredged sample (Igbokoda dredged sample) were determined using the British Standard. The physico-mechanical properties (water absorption, density and compressive strength) of blocks produced were evaluated. The dredged sample is classified as a silty material. Seven replacement levels of sharp sand were considered in the study (SS- Sharp Sand and DS – Dredged Sample) was done with constant amount of cement. 1- 85 % DS and 15 % SS, 2- 70 % DS and 30 % SS, 3- 55 % DS and 45 % SS, 4- 50 % DS and 50 % SS, 5- 45 % DS and 55 % SS, 6- 30 % DS and 70 % SS, 7- 15 % DS and 85 % SS and 8 – IS 100 % with cement; 9 – SS 100 % with cement) of different ages (7 days, 14 days, 21 days and 28 days) for the production of blocks. The compressive strength of the blocks produced ranges between 0.52 MPa to 3.0 MPa and considering the mixes, the highest compressive strength was found in mix of 15 % DS and 85 % SS.

Keywords: dredge sample, silt, sharp sand, block, cement

Procedia PDF Downloads 366
1841 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 271
1840 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 199
1839 Investigation Edge Coverage of Automotive Electrocoats Filled by Nano Silica Particles

Authors: Marzieh Bakhtiary Noodeh, Mahla Zabet

Abstract:

Attempts have been carried out to enhance the anticorrosion properties as well as edge coverage of an automotive electrocoating using the nano silica particles. To this end, the automotive electrocoating was reinforced with the nano silica particles at various weight fractions. The electrocoats were applied on the surface of punched edge followed by curing at 160⁰C for 20 min. The effects of nano silica particles on the rheological properties, influencing edge coverage were studied by a RMS (Rheometric Mechanical Spectrometer) technique. The anticorrosion properties were studied by a salt-spray test. The results obtained revealed that nano silica particles can significantly enhance the edge coverage by increasing minimum melt viscosity of electrocoats. It was shown that using 4 wt% nano silica particles, both anticorrosion properties and edge coverage of the electrocoats were significantly improved.

Keywords: nano silica, electrocoat, edge coverage, anticorrosion

Procedia PDF Downloads 307
1838 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 148
1837 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball

Procedia PDF Downloads 629
1836 Retention Properties of the Matrix Material Fe-Mn-Cu-Sn-C in Relation to Diamond Particles

Authors: Elżbieta Cygan-Bączek, Piotr Wyżga, Sławomir Cygan

Abstract:

In the presented work, the main goal was to investigate the retention properties, defined as the ability of the matrix material to hold diamond particles in relation to metallized (Ti, Si, Cr, Co, Cu, Ni) and non-metallized diamond crystals. For this purpose, diamond-impregnated specimens were tested for wear rate on abrasive sandstone using a test rig specially designed to simulate tool application conditions. The tests that involved 3- and 2-body abrasion ranked the alloys in different orders. The ability of the matrix to retain diamond crystals was determined using the electron microskopy (SEM, TEM). The specimens were also characterized by X-ray diffraction (XRD) and hardness. The conducted research has shown that Si and Ti metallized diamonds, apart from mechanical jamming in the matrix, are also connected in a metallurgical manner, ensuring the improvement of the retention properties of the matrix material.

Keywords: diamond, metallic-diamond segments, retention, abrasive wear resistance

Procedia PDF Downloads 128
1835 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage

Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais

Abstract:

The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.

Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless

Procedia PDF Downloads 295