Search results for: Learning Evaluation
10998 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 14910997 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 23510996 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation
Authors: Abul Bashar
Abstract:
The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.Keywords: cloud computing, modeling framework, performance evaluation, simulation tools
Procedia PDF Downloads 50210995 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 18210994 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica
Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel
Abstract:
Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.Keywords: blended learning, digital learning, medical education, student perceptions
Procedia PDF Downloads 16610993 Information and Communication Technology Learning between Parents and High School Students
Authors: Yu-Mei Tseng, Chih-Chun Wu
Abstract:
As information and communication technology (ICT) has become a part of people’s lives, most teenagers born after the 1980s and grew up in internet generation are called digital natives. Meanwhile, those teenagers’ parents are called digital immigrants. They need to keep learning new skills of ICT. This study investigated that high school students helped their parents set up social network services (SNS) and taught them how to use ICT. This study applied paper and pencil anonymous questionnaires that asked the ICT learning and ICT products using in high school students’ parents. The sample size was 2,621 high school students, including 1,360 (51.9%) males and 1,261 (48.1%) females. The sample was from 12 high school and vocational high school in central Taiwan. Results from paired sample t-tests demonstrated regardless genders, both male and female high school students help mothers set up Facebook and LINE more often than fathers. In addition, both male and female high school students taught mothers to use ICT more often than fathers. Meanwhile, both male and female high school students teach mothers to use SNS more often than fathers. The results showed that intergenerational ICT teaching occurred more often between mothers and her children than fathers. It could imply that mothers play a more important role in family ICT learning than fathers, or it could be that mothers need more help regarding ICT than fathers. As for gender differences, results from the independent t-tests showed that female high school students were more likely than male ones to help their parents setup Facebook and LINE. In addition, compared to male high school students, female ones were more likely to teach their parents to use smartphone, Facebook and LINE. However, no gender differences were detected in teaching mothers. The gender differences results suggested that female teenagers offer more helps to their parents regarding ICT learning than their male counterparts. As for area differences, results from the independent t-tests showed that the high school in remote area students were more likely than metropolitan ones to teach parents to use computer, search engine and download files of audio and video. The area differences results might indicate that remote area students were more likely to teach their parents how to use ICT. The results from this study encourage children to help and teach their parents with ICT products.Keywords: adult ICT learning, family ICT learning, ICT learning, urban-rural gap
Procedia PDF Downloads 17710992 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students
Authors: Dina L. DiSantis
Abstract:
Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.Keywords: education for sustainability, place-based learning, watershed science, water quality
Procedia PDF Downloads 15410991 Curriculum Development in South African Higher Education Institutions: Key Considerations
Authors: Cosmas Maphosa, Ndileleni P. Mudzielwana, Lufuno Netshifhefhe
Abstract:
Core business in a university centers on a curriculum. Teaching, learning, assessment and university products all have a bearing on the curriculum. In this discussion paper, the researchers engage in theoretical underpinnings of curriculum development in universities in South Africa. The paper is hinged on the realization that meaningful curriculum development is only possible if academic staff member has a thorough understanding of curriculum, curriculum design principles, and processes. Such understanding should be informed by theory. In this paper, the researchers consider curriculum, curriculum orientations, and the role of learning outcomes in curriculum development. Important and key considerations in module/course design are discussed and relevant examples given. The issue of alignment, as an important aspect of module/course design, is also explained and exemplified. Conclusions and recommendations are made.Keywords: curriculum, curriculum development, knowledge, graduate attributes, competencies, teaching and learning
Procedia PDF Downloads 38610990 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 16810989 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.Keywords: Brazil, higher education, internationalization, multilingualism
Procedia PDF Downloads 15510988 The Engagement of Students with Learning Disabilities in Regular Public Primary School in Indonesia
Authors: Costrie Ganes Widayanti
Abstract:
Learning Disabilities (LDs) are less understood by the Indonesia’s educational practitioners. As a result, students with LDs are at risk of being outcast from the learning process that requires participation, which potentially disconnects them academically and socially. Its objective is to raise the voice of students with LDs regarding their engagement in the classroom. This research is conducted in two urban regular public primary schools in Indonesia. The study uses an ethnographic case study research design, which explores the views and experiences of four (4) students with LDs. The data were collected using participant observations and interviews. The preliminary findings highlighted two areas: 1) the stigmatization about LDs; and 2) perceived membership. Having LDs was a barrier to fully engage in the academic and social life. Interestingly, they were more likely dependent on each other for support as limited assistance was offered by teachers and peers. Their peers did not take a keen interest in helping them when they found difficulties with the assignments. Furthermore, due to their low academic performance, they were not in favor of being nominated as a group member. In a situation that required them to do a group assignment, they were not expected to give a contribution, positioning themselves as incompatible. These findings indicated that such practices legitimate the hegemony of the superior over those who are powerless and left behind.Keywords: engagement, experiences, learning disability, qualitative design
Procedia PDF Downloads 12710987 Development of a Distance Training Package on Production of Handbook and Report Writing for Innovative Learning and Teaching for Vocational Teachers of Office of the Vocational Education Commission
Authors: Petchpong Mayukhachot
Abstract:
The purposes of this research were (1) to develop a distance training package on topic of Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission; (2) to study the effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission. and (3) to study the samples’ opinion on the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission Research and Development was used in this research. The purposive sampling group of this research was 39 Vocational Teachers of Office of The Vocational Education Commission. Instruments were; (1) the distance training package, (2) achievement tests on understanding of Production of Handbook and Report writing for innovative learning and teaching and learning activities to develop practical skills, and (3) a questionnaire for sample’s opinion on the distance training package. Percent, Mean, Standard Deviation, the E1/E2 efficiency index and t-test were used for data analysis. The findings of the research were as follows: (1) The efficiency of the distance training package was established as 80.90 / 81.90. The distance training package composed of the distance training package document and a manual for the distance training package. The distance training package document consisted of the name of the distance training package, direction for studying the distance training package, content’s structure, concepts, objectives, and activities after studying the distance training package. The manual for the distance training package consisted of the explanation of the distance training package and objectives, direction for using the distance training package, training schedule, documents as a manual of speech, and evaluations. (2) The effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission were the posttest average scores of achievement on understanding of Technology and Occupations teaching for development of critical thinking of the sample group were higher than the pretest average scores. (3) The most appropriate of trainees’ opinion were contents of the distance training package is beneficial to performance. That can be utilized in Teaching or operations. Due to the content of the two units is consistent and activities assigned to the appropriate content.Keywords: distance training package, handbook writing for innovative learning, teaching report writing for innovative learning, teaching
Procedia PDF Downloads 43510986 Simulation-Based Learning: Cases at Slovak University of Technology, at Faculty of Materials Science and Technology
Authors: Gabriela Chmelikova, Ludmila Hurajova, Pavol Bozek
Abstract:
Current era has brought hand in hand with the vast and fast development of technologies enormous pressure on individuals to keep being well - oriented in their professional fields. Almost all projects in the real world require an interdisciplinary perspective. These days we notice some cases when students face that real requirements for jobs are in contrast to the knowledge and competences they gained at universities. Interlacing labor market and university programs is a big issue these days. Sometimes it seems that higher education only “chases” reality. Simulation-based learning can support students’ touch with real demand on competences and knowledge of job world. The contribution provided a descriptive study of some cases of simulation-based teaching environment in different courses at STU MTF in Trnava and discussed how students and teachers perceive this model of teaching-learning approach. Finally, some recommendations are proposed how to enhance closer relationship between academic world and labor market.Keywords: interdisciplinary approach, simulation-based learning, students' job readiness, teaching environment in higher education
Procedia PDF Downloads 27310985 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 6410984 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 17110983 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes
Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng
Abstract:
To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation
Procedia PDF Downloads 5810982 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds
Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa
Abstract:
Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.Keywords: ICT, e-health, machine learning, ICU, healthcare
Procedia PDF Downloads 11010981 A Study of Taiwanese Students' Language Use in the Primary International Education via Video Conferencing Course
Authors: Chialing Chang
Abstract:
Language and culture are critical foundations of international mobility. However, the students who are limited to the local environment may affect their learning outcome and global perspective. Video Conferencing has been proven an economical way for students as a medium to communicate with international students around the world. In Taiwan, the National Development Commission advocated the development of bilingual national policies in 2030 to enhance national competitiveness and foster English proficiency and fully launched bilingual activation of the education system. Globalization is closely related to the development of Taiwan's education. Therefore, the teacher conducted an integrated lesson through interdisciplinary learning. This study aims to investigate how the teacher helps develop students' global and language core competencies in the international education class. The methodology comprises four stages, which are lesson planning, class observation, learning data collection, and speech analysis. The Grice's Conversational Maxims are adopted to analyze the students' conversation in the video conferencing course. It is the action research from the teacher's reflection on approaches to developing students' language learning skills. The study lays the foundation for mastering the teacher's international education professional development and improving teachers' teaching quality and teaching effectiveness as a reference for teachers' future instruction.Keywords: international education, language learning, Grice's conversational maxims, video conferencing course
Procedia PDF Downloads 12110980 Autonomy in Teaching and Learning Subject-Specific Academic Literacy
Authors: Maureen Lilian Klos
Abstract:
In this paper, the notion of autonomy in language teaching and learning is explored with a view to designing particular subject-specific academic literacy at higher education level, for mostly English second or third language learners at the Nelson Mandela University, Port Elizabeth, South Africa. These courses that are contextualized in subject-specific fields studied by students in Arts, Education and Social Science Faculties aim to facilitate learners in the manipulation of cognitively demanding academic texts. However, classroom contact time for these courses is limited to one ninety sessions per week. Thus, learners need to be autonomously responsible for developing their own skills when manipulating and negotiating appropriate academic textual conventions. Thus, a model was designed to allow for gradual learner independence in language learning skills. Learners experience of the model was investigated using the Phenomenological Research Approach. Data in the form of individual written reflections and transcripts of unstructured group interviews were analyzed for themes and sub-themes. These findings are discussed in the article with a view to addressing the practical concerns of the learners in this case study.Keywords: academic literacies, autonomy, language learning and teaching, subject-specific language
Procedia PDF Downloads 25910979 An Adaptive Conversational AI Approach for Self-Learning
Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo
Abstract:
In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.Keywords: conversational AI, chatbot, dialog management, semantic analysis
Procedia PDF Downloads 13610978 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 12910977 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 7310976 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 20010975 Integrating Practice-Based Learning in Accounting Education: Bolstering Students Engagement and Learning
Authors: Humayun Murshed, Shibly Abdullah
Abstract:
This paper focuses on sharing experience gained through a pilot project undertaken to teach an introductory accounting subject linking real-life ground realities with the fundamental concepts of accounting. In view of the practical dimensions of Accounting it has been observed that adopting a teaching approach based on practical illustrations help students to motivate and generate interests to take accounting profession as their career. The paper reports that students’ perception about accounting as ‘dreary’ has been changed to ‘interesting’ due to adoption of practice based approach in teaching. The authors argue that ‘concept mapping’ can play a vital role in facilitating practice based education in accounting which promotes a rewarding learning experience among the students. The paper considers taking into account generic skills development, student centric learning, development of innovative assessment tasks, making students aware of the potential benefits of practice based education primarily through concept mapping, and engaging them both inside and outside of the class rooms are critical for ensuring success of this approach.Keywords: accounting education, pedagogy, practice-based education, concept mapping
Procedia PDF Downloads 34410974 A Problem-Based Learning Approach in a Writing Classroom: Tutors’ Experiences and Perceptions
Authors: Muhammad Mukhtar Aliyu
Abstract:
This study investigated tutors’ experiences and perceptions of a problem-based learning approach (PBL) in a writing classroom. The study involved two Nigerian lecturers who facilitated an intact class of second-year students in an English composition course for the period of 12 weeks. Semi-structured interviews were employed to collect data of the study. The lecturers were interviewed before and after the implementation of the PBL process. The overall findings of the study show that the lecturers had positive perceptions of the use of PBL in a writing classroom. Specifically, the findings reveal the lecturers’ positive experiences and perception of the group activities. Finally, the paper gives some pedagogical implications which would give insight for better implementation of the PBL approach.Keywords: experiences and perception, Nigeria, problem-based learning approach, writing classroom
Procedia PDF Downloads 17010973 Stimulating Effects of Media in Improving Quality of Distance Education: A Literature Based Study
Authors: Tahzeeb Mahreen
Abstract:
Distance education refers to giving instruction in which students are remote from the institution and once in a while go to formal demonstration classes, and teaching sessions. Segments of media, for example, radio, TV, PC and Internet and so on are the assets and method for correspondence being utilized as a part of learning material by many open and distance learning institutions. Media has a great part in maximizing the learning opportunities thus enabling distance education, a mode of increased literacy rate of the country. This study goes for analyzing how media had affected distance education through its different mediums. The objectives of the study were (i) to determine the direct impact of media on distance education? (ii) To know how media effects distance education pedagogy (iii) To find out how media works to increase student’s achievement. Literature-based methodology was used, and books, peer-reviewed articles, press reports and internet-based materials were studied as a result. By using descriptive qualitative research analysis, the researcher has interpreted that distance education programs are progressively utilizing mixes of media to convey training that has a positive impact on learning along with a few challenges. In addition, the perception of the researcher varied depending on the programs of distance learning but generally believed that electronic media were moderately more supportive in enhancing the overall performance of the learners. It was concluded that the intellectual style, identity qualities, and self-expectations are the three primary enhanced areas in a student’s educational life in distance education programs. It was portrayed that a comprehension of how individual learners approach learning may make it workable for the distance educator to see an example of learning styles and arrange or modify course presentations through media. Moreover, it is noticed that teaching in distance education address the developing role of the instructor, the requirement for diminishing resistance as conventional teachers utilize remove conveyance frameworks lastly, staff state of mind toward the utilization of innovation. Furthermore, the results showed that media had assumed its part to make distance learning educators more dynamic, capable and concerned about their individual works. The study also indicated a high positive relationship between the media available at study centers and media used by the distance education. The challenge pointed out by the researcher was the clash of distance and time with communication as the life situations of every learner are varied. Recommendations included the realization of the duty of distance learning instructor to help students understand the effective use of media for their study lessons and also to develop online learning communities to be in instant connection with the students.Keywords: distance education, education, media, teaching and learning
Procedia PDF Downloads 14110972 EFL Teacher Cognition and Learner Autonomy: An Exploratory Study into Algerian Teachers’ Understanding of Learner Autonomy
Authors: Linda Ghout
Abstract:
The main aim of the present case study was to explore EFL teachers’ understanding of learner autonomy. Thus, it sought to uncover how teachers at the de Department of English, University of Béjaia, Algeria view the process of language learning, their learners’ roles, their own roles and their practices to promote learner autonomy. For data collection, firstly, a questionnaire was designed and administered to all the teachers in the department. Secondly, interviews were conducted with some volunteers for the sake of clarifying emerging issues and digging deeper into some of the teachers’ answers to the questionnaire. The analysis revealed interesting data pertaining to the teachers’ cognition and its effects on their teaching practices. With regard to their views of language learning, it seems that the participants hold discrete views which are in opposition with the principles of learner autonomy. The teachers seemed to have a limited knowledge of the characteristics of autonomous learners and autonomy- based methodology. When it comes to teachers’ practices to promote autonomy in their classes, the majority reported that the most effective way is to ask students to search for information on their own. However, in defining their roles in the EFL learning process, most of the respondents claimed that teachers should play the role of facilitators.Keywords: English, learner autonomy, learning process, teacher cognition
Procedia PDF Downloads 38910971 Blended Intensive Programmes: A Way Forward to Promote Internationalization in Higher Education
Authors: Sonja Gögele, Petra Kletzenbauer
Abstract:
International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff and student mobility, and blended international projects). The latest innovative approach in terms of Erasmus+ are so called Blended Intensive Programmes (BIP) which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of internationalization and Englishization. In this context, key roles are assigned to the development of future transnational and transdisciplinary curricula by considering innovative aspects for learning and teaching (i.e. virtual collaboration, research-based learning).Keywords: internationalization, englishization, short-term mobility, international teaching and learning
Procedia PDF Downloads 12010970 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study
Authors: Sitong. Chen, Bing Wei
Abstract:
As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.Keywords: high school students, identity formation, learning experiences, living experiences, science identity
Procedia PDF Downloads 5810969 Studying Language of Immediacy and Language of Distance from a Corpus Linguistic Perspective: A Pilot Study of Evaluation Markers in French Television Weather Reports
Authors: Vince Liégeois
Abstract:
Language of immediacy and distance: Within their discourse theory, Koch & Oesterreicher establish a distinction between a language of immediacy and a language of distance. The former refers to those discourses which are oriented more towards a spoken norm, whereas the latter entails discourses oriented towards a written norm, regardless of whether they are realised phonically or graphically. This means that an utterance can be realised phonically but oriented more towards the written language norm (e.g., a scientific presentation or eulogy) or realised graphically but oriented towards a spoken norm (e.g., a scribble or chat messages). Research desiderata: The methodological approach from Koch & Oesterreicher has often been criticised for not providing a corpus-linguistic methodology, which makes it difficult to work with quantitative data or address large text collections within this research paradigm. Consequently, the Koch & Oesterreicher approach has difficulties gaining ground in those research areas which rely more on corpus linguistic research models, like text linguistics and LSP-research. A combinatory approach: Accordingly, we want to establish a combinatory approach with corpus-based linguistic methodology. To this end, we propose to (i) include data about the context of an utterance (e.g., monologicity/dialogicity, familiarity with the speaker) – which were called “conditions of communication” in the original work of Koch & Oesterreicher – and (ii) correlate the linguistic phenomenon at the centre of the inquiry (e.g., evaluation markers) to a group of linguistic phenomena deemed typical for either distance- or immediacy-language. Based on these two parameters, linguistic phenomena and texts could then be mapped on an immediacy-distance continuum. Pilot study: To illustrate the benefits of this approach, we will conduct a pilot study on evaluation phenomena in French television weather reports, a form of domain-sensitive discourse which has often been cited as an example of a “text genre”. Within this text genre, we will look at so-called “evaluation markers,” e.g., fixed strings like bad weather, stifling hot, and “no luck today!”. These evaluation markers help to communicate the coming weather situation towards the lay audience but have not yet been studied within the Koch & Oesterreicher research paradigm. Accordingly, we want to figure out whether said evaluation markers are more typical for those weather reports which tend more towards immediacy or those which tend more towards distance. To this aim, we collected a corpus with different kinds of television weather reports,e.g., as part of the news broadcast, including dialogue. The evaluation markers themselves will be studied according to the explained methodology, by correlating them to (i) metadata about the context and (ii) linguistic phenomena characterising immediacy-language: repetition, deixis (personal, spatial, and temporal), a freer choice of tense and right- /left-dislocation. Results: Our results indicate that evaluation markers are more dominantly present in those weather reports inclining towards immediacy-language. Based on the methodology established above, we have gained more insight into the working of evaluation markers in the domain-sensitive text genre of (television) weather reports. For future research, it will be interesting to determine whether said evaluation markers are also typical for immediacy-language-oriented in other domain-sensitive discourses.Keywords: corpus-based linguistics, evaluation markers, language of immediacy and distance, weather reports
Procedia PDF Downloads 219