Search results for: shock-boundary layer interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6234

Search results for: shock-boundary layer interaction

4344 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 259
4343 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 103
4342 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation

Authors: Tomasz Balabanski, Anna Biedunkiewicz

Abstract:

Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.

Keywords: beach, microfungi, sand, yeasts

Procedia PDF Downloads 96
4341 Cyclic Liquefaction Resistance of Reinforced Sand

Authors: S. A. Naeini, Z. Eftekhari

Abstract:

Liquefaction phenomenon in sand is nowadays a classical soil mechanics subject. Using a cyclic triaxial test apparatus, we use non-woven geotextile reinforcement to improve the liquefaction resistance of sand. The layer configurations used are zero, one, two and three horizontal reinforcing layers in a triaxial test sample. The influences of the number of geotextile layers, and cyclic stress ratio (CSR) were studied and described. The results illustrated that the geotextile inclusion increases liquefaction resistance.

Keywords: liquefaction resistance, geotextile, sand, cyclic triaxial test, cyclic stress ratio

Procedia PDF Downloads 569
4340 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 177
4339 Ecological Concerns in Food Systems: An Ethnographical Approach on Vegan Impact in Governmentality

Authors: Jessica Gonzalez

Abstract:

Veganism, along with different types of vegetarianism, consists in the abstinence of animal products. Far from being only an alimentary regulation, it stands as a political posture against the food industry generating itself a set of beliefs, prohibitions, and attitudes that compel the individual to a reevaluation of his obligations towards the environment. Veganism defends animal rights and at the same time reinforces a different conception of natural resources embodying it in alimentary restrictions. These practices emerge in the context of alimentary modernity, which is characterized by bringing new concerns to the consumer. An increased skepticism towards the government ability to protect food supply; a notable distrust toward the market guaranties on providing safe food with sustainable techniques and the desire to react to the neoliberal forms of exploitation are some of its consequences of this phenomenon. This study aims to approach the concept of governmentality as a coproduced system of legitimized practices and knowledge, formed by the interaction of the different actors that are involved. In a scenario where the State seems to retreat from centralized regulation of food production giving up importance to citizens, dietary consultants, farmers, and stockbreeders, veganism plays its role on the conformation of distinctive forms of environmentalism, nature rights and responses to ecological crisis. The ethnographic method allows observing the mechanisms of interaction of consumers and discourses with the mainstream food system, providing evidence about the means of generation of new conceptions about nature and the environment. The paper focuses on how the dietary restrictions, consumption patterns and public discourses of vegans in Barcelona impact local consumption, demonstrating its relevance as a mechanism that associates particular concerns about food with political economy.

Keywords: animal rights, environmentalism, food system, governmentality, veganism

Procedia PDF Downloads 123
4338 Deciphering Specific Host-Selective Toxin Interaction of Cassiicolin with Lipid Membranes and its Cytotoxicity on Rubber Leaves

Authors: Kien Xuan Ngo

Abstract:

Cassiicolin (Cas), a toxin produced by Corynespora cassiicola, is responsible for corynespora leaf fall (CLF) disease in rubber trees. Currently, the molecular mechanism of the cytotoxicity of Cas isoforms (i.e., Cas1, Cas2) on rubber leaves and its host selectivity have not been fully elucidated. This study analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane-disruption activities. Using high-speed atomic force microscopy and confocal microscopy, this study reveals that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more susceptible to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. In summary, This study unveils that (i) Cas1 and Cas2 directly damage and cause necrosis in the leaves of specific rubber clones; (ii) Cas1 and Cas2 can form biofilm-like structures on specific lipid membranes (negative phospholipids, glycerolipids, and sterols). The biofilm-like formation of Cas toxin plays an important role in selective disruption on lipid membranes; (iii) Vulnerability of the specific cytoplasmic membranes to the selective Cas toxin is the most remarkable feature of cytotoxicity of Cas toxin on plant cells. Finally, researcher’s exploration is crucial to understand the basic molecular mechanism underlying the host-selective toxic interaction of Cas toxin with cytoplasmic membranes in plant cells.

Keywords: cassiicolin, corynespora leaf fall disease, high-speed AFM, giant liposome vesicles

Procedia PDF Downloads 118
4337 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys

Authors: Mechri hanane, Azzaz Mohammed

Abstract:

Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.

Keywords: nanomaterials, thin films, TEM, SEM

Procedia PDF Downloads 405
4336 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo

Authors: M. P. S. Tomar, Neelam Bansal

Abstract:

Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.

Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy

Procedia PDF Downloads 148
4335 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric

Authors: Debasish Das, Mainak Mitra, A.Chaudhuri

Abstract:

For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.

Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy

Procedia PDF Downloads 250
4334 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models

Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin

Abstract:

Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.

Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR

Procedia PDF Downloads 147
4333 Mobile Smart Application Proposal for Predicting Calories in Food

Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso

Abstract:

Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.

Keywords: volume estimation, calorie estimation, artificial vision, food nutrition

Procedia PDF Downloads 93
4332 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines

Authors: Bruna P. De Souza, Ricardo C. De Almeida

Abstract:

In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.

Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind

Procedia PDF Downloads 136
4331 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions

Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi

Abstract:

This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.

Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces

Procedia PDF Downloads 269
4330 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

Authors: Qinyi Mei, Li-Ping Wang

Abstract:

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Keywords: linear diffusion layer, circulant matrix, lightweight, maximum distance separable (MDS) matrix

Procedia PDF Downloads 405
4329 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 163
4328 Braille Code Matrix

Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane

Abstract:

According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.

Keywords: Braille code, comsol software, microactuators, piezoelectric

Procedia PDF Downloads 352
4327 Biodiversity Interactions Between C3 and C4 Plants under Agroforestry Cropping System

Authors: Ezzat Abd El Lateef

Abstract:

Agroforestry means combining the management of trees with productive agricultural activities, especially in semiarid regions where crop yield increases are limited in agroforestry systems due to the fertility and microclimate improvements and the large competitive effect of trees with crops for water and nutrients, in order to assess the effect of agroforestry of some field crops with citrus trees as an approach to establish biodiversity in fruit tree plantations. Three field crops, i.e., maize, soybean and sunflower, were inter-planted with seedless orange trees (4*4 m) or were planted as solid plantings. The results for the trees indicated a larger fruit yield was obtained when soybean and sunflowers were interplant with citrus. Statistically significant effects (P<0.05) were found for maize grain and biological yields, with increased yields when grown as solid planting. There were no differences in the yields of soya bean and sunflower, where the yields were very similar between the two cropping systems. It is evident from the trials that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Maize, unlike the other crops, was more sensitive to shade conditions under agroforestry practice and not preferred in the biodiversity system. The potential of agroforestry to improve or increase biodiversity is efficient as the understorey crops are usually C4 species, and the overstorey trees are invariably C3 species in agroforestry. Improvement in interplant species is most likely if the understorey crop is a C3 species, which are usually light saturated in the open, and partial shade may have little effect on assimilation or by a concurrent reduction in transpiration. It could be concluded that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Some field crops could be employed successfully, like soybean or sunflowers, while others like maize are sensitive to incorporate in agroforestry system.

Keywords: agroforestry, field crops, C3 and C4 plants, yield

Procedia PDF Downloads 179
4326 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng

Abstract:

The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 239
4325 Simulation-Based Validation of Safe Human-Robot-Collaboration

Authors: Titanilla Komenda

Abstract:

Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.

Keywords: human-machine-system, human-robot-collaboration, safety, simulation

Procedia PDF Downloads 359
4324 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 302
4323 High-Temperature Corrosion of Aluminized and Chromized Fe-25.8%Cr-19.5%Ni Alloys in N2/H2S/H2O-mixed Gases

Authors: Min Jung Kim, Dong Bok Lee

Abstract:

Alloys of Fe-25.8%Cr-19.5%Ni (SUS310 stainless steel) were either chromized or aluminized via pack cementation, and corroded at 800 oC for 100 h in 1 atm of (0.9448 atm of N2+0.031 atm of H2O+0.0242 atm of H2S)-mixed gases. The chromized layer consisted primarily of Cr1.36Fe0.52 and some Cr23C6. Its corrosion resulted in the formation of Cr2S3 and some FeS and Fe5Ni4S8. The aluminized coating consisted primarily of FeAl. Its corrosion resulted in the formation of α-Al2O3, Al2S3, and Cr2S3. Aluminizing was more effective than chromizing in increasing the corrosion resistance of the substrate, due mainly to the formation of α-Al2O3.

Keywords: aluminizing, chromizing, corrosion, H2S gas

Procedia PDF Downloads 487
4322 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 417
4321 Adaptive Reuse of Lost Urban Space

Authors: Rana Sameeh

Abstract:

The city is the greatest symbol of human civilization and has been built for safety and comfort. However, uncontrolled urban growth caused some anonymous and unsightly images of the cities such as unused or abandoned spaces. When social interaction is missed in a public space it means the public space is lost since public spaces reflect the social life and interaction of people. Accordingly; this space became one of the most meaningless parts of the cities and has broken the continuity of the urban fabric. Lost urban spaces are the leftover unstructured landscape within the urban fabric. They are generally the unrecognized urban areas that are in need of redesign, since they have a great value that can add to their surrounding urban context. The research significance lies within the importance of urban open spaces, their value and their impact on the urban fabric. The research also addresses the reuse and reclamation of lost urban spaces in order to increase the percentage of green areas along the urban fabric, provide urban open spaces, develop a sustainable approach towards urban landscape and enhance the quality of the public open space and user experience. In addition, the reuse of lost space will give it the identity and function it lacks while also providing places for presence, spending time and observing. Creating continuity in a broken urban fabric represents an exploratory process in the relationship between infrastructure and the urban fabric and seeks to establish an architectural solution to leftover space within the city. In doing so, the research establishes a framework (criteria) for adaptive reuse of lost urban space throughout inductive and deductive methodology, analytical methodology; by analyzing some relevant examples and similar cases of lost spaces and finally through field methodology; by applying the achieved criteria on a case study in Alexandria and carrying on SWOT analysis and evaluation of the potentials of this case study.

Keywords: adaptive reuse, lost urban space, quality of public open space, urban fabric

Procedia PDF Downloads 637
4320 Inflammatory Changes Caused by Lipopolysaccharide in Odontoblasts

Authors: Virve Pääkkönen, Heidi M. Cuffaro, Leo Tjäderhane

Abstract:

Objectives: Odontoblasts are the outermost cell layer of dental pulp and form the dentin. Importance of bacterial products, e.g. lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria and lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, have been indicated in the pathogenesis of pulpitis. Gram-positive bacteria are more prevalent in superficial carious lesion while the amount gram-negative is higher in the deep lesions. Objective of this study was to investigate the effect of these bacterial products on inflammatory response of pulp tissue. Interleukins (IL) were of special interest. Various ILs have been observed in the dentin-pulp complex of carious tooth in vivo. Methods: Tissue culture method was used for testing the effect of LTA and LPS on human odontoblasts. Enzymatic isolation technique was used to extract living odontoblasts for cell cultures. DNA microarray and quantitative PCR (qPCR) were used to characterize the changes in the expression profile of the tissue cultured odontoblasts. Laser microdissection was used to cut healthy and affected dentin and odontoblast layer directly under carious lesion for experiments. Cytokine array detecting 80 inflammatory cytokines was used to analyze the protein content of conditioned culture media as well as dentin and odontoblasts from the carious teeth. Results: LPS caused increased gene expression IL-1α, and -8 and decrease of IL-1β, 12 , -15 and -16 after 1h treatment, while after 24h treatment decrease of IL-8, -11 and 23 mRNAs was observed. LTA treatment caused cell death in the tissue cultured odontoblasts but in in the cell culture but not in cell culture. Cytokine array revealed at least 2-fold down-regulation of IL-1β, -10 and -12 in response to LPS treatment. Cytokine array of odontoblasts of carious teeth, as well as LPS-treated tissue-cultured odontoblasts, revealed increased protein amounts of IL-16, epidermal growth factor (EGF), angiogenin and IGFBP-1 as well as decreased amount of fractalkine. In carious dentin, increased amount of IL-1β, EGF and fractalkine was observed, as well as decreased level of GRO-1 and HGF. Conclusion: LPS caused marked changes in the expression of inflammatory cytokines in odontoblasts. Similar changes were observed in the odontoblasts cut directly under the carious lesion. These results help to shed light on the inflammatory processes happening during caries.

Keywords: inflammation, interleukin, lipoteichoic acid, odontoblasts

Procedia PDF Downloads 206
4319 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 426
4318 Effects of Foam Rolling with Different Application Volumes on the Isometric Force of the Calf Muscle with Consideration of Muscle Activity

Authors: T. Poppendieker, H. Maurer, C. Segieth

Abstract:

Over the past ten years, foam rolling has become a new trend in the fitness and health market. It is also a frequently used technique for self-massage. However, the scope of effects from foam rolling has only recently started to be researched and understood. The focus of this study is to examine the effects of prolonged foam rolling on muscle performance. Isometric muscle force was used as a parameter to determine an improving impact of the myofascial roller in two different application volumes. Besides the maximal muscle force, data were also collected on muscle activation during all tests. Twenty-four (17 females, 7 males) healthy students with an average age of 23.4 ± 2.8 years were recruited. The study followed a cross-over pre-/post design in which the order of conditions was counterbalanced. The subjects performed a one-minute and three-minute foam rolling application set on two separate days. Isometric maximal muscle force of the dominant calf was tested before and after the self-myofascial release application. The statistic software program SPSS 22 was used to analyze the data of the maximal isometric force of the calf muscle by a 2 x 2 (time of measurement x intervention) analysis of variance with repeated measures. The statistic significance level was set at p ≤ 0.05. Neither for the main effect of time of measurement (F(1,23) = .93, p = .36, f = .20) nor for the interaction of time of measurement x intervention (F(1,23) = 1.99, p = .17, f = 0.29) significant p-values were found. However, the effect size indicates a mean interaction effect with a tendency of greater pre-post improvements under the three-minute foam rolling condition. Changes in maximal force did not correlate with changes in EMG-activity (r = .02, p = .95 in the short and r = -.11, p = .65 in the long rolling condition). Results support findings of previous studies and suggest a positive potential for use of the foam roll as a means for keeping muscle force at least at the same performance level while leading to an increase in flexibility.

Keywords: application volume differences, foam rolling, isometric maximal force, self-myofascial release

Procedia PDF Downloads 285
4317 Molecular Design and Synthesis of Heterocycles Based Anticancer Agents

Authors: Amna J. Ghith, Khaled Abu Zid, Khairia Youssef, Nasser Saad

Abstract:

Backgrounds: The multikinase and vascular endothelial growth factor (VEGF) receptor inhibitors interrupt the pathway by which angiogenesis becomes established and promulgated, resulting in the inadequate nourishment of metastatic disease. VEGFR-2 has been the principal target of anti-angiogenic therapies. We disclose the new thieno pyrimidines as inhibitors of VEGFR-2 designed by a molecular modeling approach with increased synergistic activity and decreased side effects. Purpose: 2-substituted thieno pyrimidines are designed and synthesized with anticipated anticancer activity based on its in silico molecular docking study that supports the initial pharmacophoric hypothesis with a same binding mode of interaction at the ATP-binding site of VEGFR-2 (PDB 2QU5) with high docking score. Methods: A series of compounds were designed using discovery studio 4.1/CDOCKER with a rational that mimic the pharmacophoric features present in the reported active compounds that targeted VEGFR-2. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. Results: The Compounds to be synthesized showed interaction energy comparable to or within the range of the benzimidazole inhibitor ligand when docked with VEGFR-2. ADMET study showed comparable results most of the compounds showed absorption within (95-99) zone varying according to different substitutions attached to thieno pyrimidine ring system. Conclusions: A series of 2-subsituted thienopyrimidines are to be synthesized with anticipated anticancer activity and according to docking study structure requirement for the design of VEGFR-2 inhibitors which can act as powerful anticancer agents.

Keywords: docking, discovery studio 4.1/CDOCKER, heterocycles based anticancer agents, 2-subsituted thienopyrimidines

Procedia PDF Downloads 240
4316 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 257
4315 Flexible Current Collectors for Printed Primary Batteries

Authors: Vikas Kumar

Abstract:

Portable batteries are reliable source of mobile energy to power smart wearable electronics, medical devices, communications, and others internet of thing (IoT) devices. There is a continuous increase in demand for thinner, more flexible battery with high energy density and reliability to meet the requirement. For a flexible battery, factors that affect these properties are the stability of current collectors, electrode materials and their interfaces with the corrosive electrolytes. State-of-the-art conventional and flexible batteries utilise carbon as an electrode and current collectors which cause high internal resistance (~100 ohms) and limit the peak current to ~1mA. This makes them unsuitable for a wide range of applications. Replacing the carbon parts with metallic components would reduce the internal resistance (and hence reduce parasitic loss), but significantly increases the risk of corrosion due to galvanic interactions within the battery. To overcome these challenges, low cost electroplated nickel (Ni) on copper (Cu) was studied as a potential anode current collector for a zinc-manganese oxide primary battery with different concentration of NH4Cl/ZnCl2 electrolyte. Using electrical impedance spectroscopy (EIS), we monitored the open circuit potential (OCP) of electroplated nickel (different thicknesses) in different concentration of electrolytes to optimise the thickness of Ni coating. Our results show that electroless Ni coating suffer excessive corrosion in these electrolytes. Corrosion rates of Ni coatings for different concentrations of electrolytes have been calculated with Tafel analysis. These results suggest that for electroplated Ni, channelling and/or open porosity is a major issue, which was confirmed by morphological analysis. These channels are an easy pathway for electrolyte to penetrate thorough Ni to corrode the Ni/Cu interface completely. We further investigated the incorporation of a special printed graphene layer on Ni to provide corrosion protection in this corrosive electrolyte medium. We find that the incorporation of printed graphene layer provides the corrosion protection to the Ni and enhances the chemical bonding between the active materials and current collector and also decreases the overall internal resistance of the battery system.

Keywords: corrosion, electrical impedance spectroscopy, flexible battery, graphene, metal current collector

Procedia PDF Downloads 122