Search results for: network diagnostic tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10215

Search results for: network diagnostic tool

8325 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
8324 Nighttime Dehaze - Enhancement

Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout

Abstract:

In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.

Keywords: dehazing, image enhancement, nighttime, computer vision

Procedia PDF Downloads 157
8323 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions

Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji

Abstract:

Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.

Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles

Procedia PDF Downloads 270
8322 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: air pollution, commercial microwave links, rainfall, washout

Procedia PDF Downloads 111
8321 Entrepreneurship and the Growth of Small and Medium Enterprises in the Kwara state, Nigeria

Authors: Salman Abdulrasaq

Abstract:

Small and Medium Enterprises (SMEs) has been considered as indices for economic development in a country economy. The development of entrepreneurship skills is therefore necessary. This study, seeks to examine the impact of Entrepreneurship on the Growth of Small Businesses Kwara State, Nigeria. The data used were primarily obtained from the questionnaire administered to the randomly selected areas in the state. Regression statistical tool was employed with aid of SPSS to test the validity of the hypothesis formulated in the study. The study therefore concludes that; the qualities of entrepreneur have impact the growth of Small Businesses s in the selected areas of the state. In view of this, the study recommends that; entrepreneurship development would serve as a tool for the growth of small business enterprises.

Keywords: entrepreneurship, growth, development, Nigeria

Procedia PDF Downloads 406
8320 A Tool to Provide Advanced Secure Exchange of Electronic Documents through Europe

Authors: Jesus Carretero, Mario Vasile, Javier Garcia-Blas, Felix Garcia-Carballeira

Abstract:

Supporting cross-border secure and reliable exchange of data and documents and to promote data interoperability is critical for Europe to enhance sector (like eFinance, eJustice and eHealth). This work presents the status and results of the European Project MADE, a Research Project funded by Connecting Europe facility Programme, to provide secure e-invoicing and e-document exchange systems among Europe countries in compliance with the eIDAS Regulation (Regulation EU 910/2014 on electronic identification and trust services). The main goal of MADE is to develop six new AS4 Access Points and SMP in Europe to provide secure document exchanges using the eDelivery DSI (Digital Service Infrastructure) amongst both private and public entities. Moreover, the project demonstrates the feasibility and interest of the solution provided by providing several months of interoperability among the providers of the six partners in different EU countries. To achieve those goals, we have followed a methodology setting first a common background for requirements in the partner countries and the European regulations. Then, the partners have implemented access points in each country, including their service metadata publisher (SMP), to allow the access to their clients to the pan-European network. Finally, we have setup interoperability tests with the other access points of the consortium. The tests will include the use of each entity production-ready Information Systems that process the data to confirm all steps of the data exchange. For the access points, we have chosen AS4 instead of other existing alternatives because it supports multiple payloads, native web services, pulling facilities, lightweight client implementations, modern crypto algorithms, and more authentication types, like username-password and X.509 authentication and SAML authentication. The main contribution of MADE project is to open the path for European companies to use eDelivery services with cross-border exchange of electronic documents following PEPPOL (Pan-European Public Procurement Online) based on the e-SENS AS4 Profile. It also includes the development/integration of new components, integration of new and existing logging and traceability solutions and maintenance tool support for PKI. Moreover, we have found that most companies are still not ready to support those profiles. Thus further efforts will be needed to promote this technology into the companies. The consortium includes the following 9 partners. From them, 2 are research institutions: University Carlos III of Madrid (Coordinator), and Universidad Politecnica de Valencia. The other 7 (EDICOM, BIZbrains, Officient, Aksesspunkt Norge, eConnect, LMT group, Unimaze) are private entities specialized in secure delivery of electronic documents and information integration brokerage in their respective countries. To achieve cross-border operativity, they will include AS4 and SMP services in their platforms according to the EU Core Service Platform. Made project is instrumental to test the feasibility of cross-border documents eDelivery in Europe. If successful, not only einvoices, but many other types of documents will be securely exchanged through Europe. It will be the base to extend the network to the whole Europe. This project has been funded under the Connecting Europe Facility Agreement number: INEA/CEF/ICT/A2016/1278042. Action No: 2016-EU-IA-0063.

Keywords: security, e-delivery, e-invoicing, e-delivery, e-document exchange, trust

Procedia PDF Downloads 265
8319 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 218
8318 Internal and External Influences on the Firm Objective

Authors: A. Briseno, A, Zorrilla

Abstract:

Firms are increasingly responding to social and environmental claims from society. Practices oriented to attend issues such as poverty, work equality, or renewable energy, are being implemented more frequently by firms to address impacts on sustainability. However, questions remain on how the responses of firms vary across industries and regions between the social and the economic objectives. Using concepts from organizational theory and social network theory, this paper aims to create a theoretical framework that explains the internal and external influences that make a firm establish its objective. The framework explains why firms might have a different objective orientation in terms of its economic and social prioritization.

Keywords: organizational identity, social network theory, firm objective, value maximization, social responsibility

Procedia PDF Downloads 308
8317 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 163
8316 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
8315 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
8314 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
8313 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis

Authors: Robert Saputra, Tomas Havlicek

Abstract:

This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.

Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance

Procedia PDF Downloads 14
8312 Management Workspaces to Create Value

Authors: Nevruz Zogu, Shpetim Rezniqi

Abstract:

It is very important that a new environment where work shall be constructed in such a strong record to be creative and eligible for workers, can not have success in the workplace. But, is it possible to design the inner-inspire to create and collaborate? By watching and analyzing examples of creativity in business, construction managers can learn ways on how to encourage their imagination inside buildings. We struggle to find and retain talented employees and skilled labor environment is becoming more and always an important tool for recruiting and retaining employees. Managers who recognize the importance are gaining an edge over their competitors. The physical work environment is as important as its quality is often used as a recruiting tool and even to companies with The relationship between the company and the employees between strategy and behavior, between the product and the customer can reincorporated under the light of symbolic mediation of space, as instrument and interpreter of the core values and identity of the organization.

Keywords: strategy, business, quality, productivity, space, offices, assets

Procedia PDF Downloads 389
8311 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
8310 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
8309 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 180
8308 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: energy management, load profile, smart plug, wireless sensor network

Procedia PDF Downloads 273
8307 Effect of Color on Anagram Solving Ability

Authors: Khushi Chhajed

Abstract:

Context: Color has been found to have an impact on cognitive performance. Due to the negative connotation associated with red, it has been found to impair performance on intellectual tasks. Aim: This study aims to assess the effect of color on individuals' anagram solving ability. Methodology: An experimental study was conducted on 66 participants in the age group of 18–24 years. A self-made anagram assessment tool was administered. Participants were expected to solve the tool in three colors- red, blue and grey. Results: A lower score was found when presented with the color blue as compared to red. The study also found that participants took relatively greater time to solve the red colored sheet. However these results are inconsistent with pre-existing literature. Conclusion: Hence, an association between color and performance on cognitive tasks can be seen. Future directions and potential limitations are discussed.

Keywords: color psychology, experiment, anagram, performance

Procedia PDF Downloads 88
8306 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 196
8305 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design

Authors: Giuseppe Timperio, Robert de Souza

Abstract:

Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.

Keywords: decision support, disaster preparedness, humanitarian logistics, network design

Procedia PDF Downloads 167
8304 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources

Procedia PDF Downloads 275
8303 EEG and ABER Abnormalities in Children with Speech and Language Delay

Authors: Bharati Mehta, Manish Parakh, Bharti Bhandari, Sneha Ambwani

Abstract:

Speech and language delay (SLD) is seen commonly as a co-morbidity in children having severe resistant focal and generalized, syndromic and symptomatic epilepsies. It is however not clear whether epilepsy contributes to or is a mere association in the pathogenesis of SLD. Also, it is acknowledged that Auditory Brainstem Evoked Responses (ABER), besides used for evaluating hearing threshold, also aid in prognostication of neurological disorders and abnormalities in the hearing pathway in the brainstem. There is no circumscribed or surrogate neurophysiologic laboratory marker to adjudge the extent of SLD. The current study was designed to evaluate the abnormalities in Electroencephalography (EEG) and ABER in children with SLD who do not have an overt hearing deficit or autism. 94 children of age group 2-8 years with predominant SLD and without any gross motor developmental delay, head injury, gross hearing disorder, cleft lip/palate and autism were selected. Standard video Electroencephalography using the 10:20 international system and ABER after click stimulus with intensities 110 db until 40 db was performed in all children. EEG was abnormal in 47.9% (n= 45; 36 boys and 9 girls) children. In the children with abnormal EEG, 64.5% (n=29) had an abnormal background, 57.8% (n=27) had presence of generalized interictal epileptiform discharges (IEDs), 20% (n=9) had focal epileptiform discharges exclusively from left side and 33.3% (n=15) had multifocal IEDs occurring both in isolation or associated with generalised abnormalities. In ABER, surprisingly, the peak latencies for waves I, III & V, inter-peak latencies I-III & I-V, III-V and wave amplitude ratio V/I, were found within normal limits in both ears of all the children. Thus in the current study it is certain that presence of generalized IEDs in EEG are seen in higher frequency with SLD and focal IEDs are seen exclusively in left hemisphere in these children. It may be possible that even with generalized EEG abnormalities present in these children, left hemispheric abnormalities as a part of this generalized dysfunction may be responsible for the speech and language dysfunction. The current study also emphasizes that ABER may not be routinely recommended as diagnostic or prognostic tool in children with SLD without frank hearing deficit or autism, thus reducing the burden on electro physiologists, laboratories and saving time and financial resources.

Keywords: ABER, EEG, speech, language delay

Procedia PDF Downloads 535
8302 Relationship between Hepatokines and Insulin Resistance in Childhood Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Childhood obesity is an important clinical problem because it may lead to chronic diseases during the adulthood period of the individual. Obesity is a metabolic disease associated with low-grade inflammation. The liver occurs at the center of metabolic pathways. Adropin, fibroblast growth factor-21 (FGF-21), and fetuin-A are hepatokines. Due to the immense participation of the liver in glucose metabolism, these liver-derived factors may be associated with insulin resistance (IR), which is a phenomenon discussed within the scope of obesity problems. The aim of this study is to determine the concentrations of adropin, FGF-21, and fetuin-A in childhood obesity, to point out possible differences between the obesity groups, and to investigate possible associations among these three hepatokines in obese and morbidly obese children. A total of one hundred and thirty-two children were included in the study. Two obese groups were constituted. The groups were matched in terms of mean ± SD values of ages. Body mass index values of obese and morbidly obese groups were 25.0 ± 3.5 kg/m² and 29.8 ± 5.7 kg/m², respectively. Anthropometric measurements including waist circumference, hip circumference, head circumference, and neck circumference were recorded. Informed consent forms were taken from the parents of the participants. The ethics committee of the institution approved the study protocol. Blood samples were obtained after overnight fasting. Routine biochemical tests, including glucose- and lipid-related parameters, were performed. Concentrations of the hepatokines (adropin, FGF-21, fetuin A) were determined by enzyme-linked immunosorbent assay. Insulin resistance indices such as homeostasis model assessment for IR (HOMA-IR), alanine transaminase-to aspartate transaminase ratio (ALT/AST), diagnostic obesity notation model assessment laboratory index, diagnostic obesity notation model assessment metabolic syndrome index as well as obesity indices such as diagnostic obesity notation model assessment-II index, and fat mass index were calculated using the previously derived formulas. Statistical evaluation of the study data as well as findings of the study was performed by SPSS for Windows. Statistical difference was accepted significant when p is smaller than 0.05. Statistically significant differences were found for insulin, triglyceride, high-density lipoprotein cholesterol levels of the groups. A significant increase was observed for FGF-21 concentrations in the morbidly obese group. Higher adropin and fetuin-A concentrations were observed in the same group in comparison with the values detected in the obese group (p > 0.05). There was no statistically significant difference between the ALT/AST values of the groups. In all of the remaining IR and obesity indices, significantly increased values were calculated for morbidly obese children. Significant correlations were detected between HOMA-IR and each of the hepatokines. The highest one was the association with fetuin-A (r=0.373, p=0.001). In conclusion, increased levels observed in adropin, FGF-21, and fetuin-A have shown that these hepatokines possess increasing potential going from obese to morbid obese state. Out of the correlations found with the IR index, the most affected hepatokine was fetuin-A, the parameter possibly used as the indicator of the advanced obesity stage.

Keywords: adropin, fetuin A, fibroblast growth factor-21, insulin resistance, pediatric obesity

Procedia PDF Downloads 176
8301 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 285
8300 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 203
8299 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 163
8298 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.

Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method

Procedia PDF Downloads 404
8297 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
8296 talk2all: A Revolutionary Tool for International Medical Tourism

Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury

Abstract:

Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.

Keywords: language translation, communication, machine learning, medical tourism

Procedia PDF Downloads 214