Search results for: hybrid fuzzy weighted k-nearest neighbor
1196 Evaluation of Interspecific Pollination of Elaeis guineensis and Elaeis oleifera Carried Out in the Ucayali Region-Peru
Authors: Victor Sotero, Cindy Castro, Ena Velazco, Ursula Monteiro, Dora Garcia
Abstract:
The aim of this study is to carry out the evaluation of the artificial pollination of the female flowers of E. oleifera with pollen of E. guineensis, to obtain the hybrid Palma OXG, which presents two characteristics of interest, such as high resistance to the disease of spear rot and high concentration of oleic acid. The works were carried out with matrices from the experimental fields and INIA in the Province of Colonel Portillo in the Ucayali Region-Peru. From the pollination of five species of E. oleifera, fruits were obtained in two of them, called O7 and O68, with a percentage of 23.6% and 18.6% of fertile fruits. When germination was carried out in a controlled environment of temperature, air, and humidity, only the O17 species were germinated with a yield of 68.7%.Keywords: Elaeis oleífera, Elaeis guineensis, palm OXG, pollination
Procedia PDF Downloads 1421195 The Current And Prospective Legal Regime of Non-Orbital Flights
Authors: Olga Koutsika
Abstract:
The paper deals primarily with the question of the legal framework of non-orbital flights. The submission is based upon two pillars, starting with the ill-defined current legal regime and proceeding to further recommendations for the prospective legal regime for non-orbital flights. For this reason, the paper focuses on certain key legal aspects of the topic, including among other things liability, responsibility, jurisdiction, registration and authorisation. Furthermore, taking into consideration the hybrid nature of both the craft conducting non-orbital flights and of the flights themselves, which exit airspace but do not enter an orbit in outer space, the paper addresses each legal question from the perspective of both air law and space law and concludes to a number of recommendations regarding the applicability of each legal regime for each legal question individually.Keywords: current regime, legal framework, non-orbital flights, prospective regime
Procedia PDF Downloads 3831194 Solid Waste Disposal Site Selection in Thiruvananthapuram Corporation Area by Data Analysis Using GIS and Remote Sensing Tools
Authors: C. Asha Poorna, P. G. Vinod, A. R. R. Menon
Abstract:
Currently increasing population and their activities like urbanization and industrialization generating the greatest environmental, issue called Waste. And the major problem in waste management is selection of an appropriate site for waste disposal. The selection of suitable site have constrains like environmental, economical and political considerations. In this paper we discuss the strategies to be followed while selecting a site for decentralized system for solid waste disposal, using Geographic Information System (GIS), the Analytical Hierarchy Process (AHP) and the remote sensing method for Thiruvananthapuram corporation area. It is located on the west coast of India near the extreme south of the mainland. It lies on the shores of Killiyar and Karamana River. Being on the basin the waste managements must be regulated with the water body. The different criteria considered for waste disposal site selection are lithology, surface water, aquifer, groundwater, land use, contours, aspect, elevation, slope, and distance to road, distance from settlement are examined in relation to land fill site selection. Each criterion was identified and weighted by AHP score and mapped using GIS technique and suitable map is prepared by overlay analysis.Keywords: waste disposal, solid waste management, Geographic Information System (GIS), Analytical Hierarchy Process (AHP)
Procedia PDF Downloads 3971193 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6441192 Strategies to Achieve Deep Decarbonisation in Power Generation: A Review
Authors: Abdullah Alotaiq
Abstract:
The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across the heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.Keywords: review, power generation, energy transition, decarbonisation
Procedia PDF Downloads 541191 Engaging Teacher Inquiry via New Media in Traditional and E-Learning Environments
Authors: Daniel A. Walzer
Abstract:
As the options for course delivery and development expand, plenty of misconceptions still exist concerning e-learning and online course delivery. Classroom instructors often discuss pedagogy, methodologies, and best practices regarding teaching from a singular, traditional in-class perspective. As more professors integrate online, blended, and hybrid courses into their dossier, a clearly defined rubric for gauging online course delivery is essential. The transition from a traditional learning structure towards an updated distance-based format requires careful planning, evaluation, and revision. This paper examines how new media stimulates reflective practice and guided inquiry to improve pedagogy, engage interdisciplinary collaboration, and supply rich qualitative data for future research projects in media arts disciplines.Keywords: action research, inquiry, new media, reflection
Procedia PDF Downloads 3071190 A Location-Based Search Approach According to Users’ Application Scenario
Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang
Abstract:
Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.Keywords: data mining, knowledge management, location-based service, user application scenario
Procedia PDF Downloads 1231189 Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting
Authors: Soulayma Smirani, Mourad Aidi, Taoufik Aguili
Abstract:
Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency.Keywords: computational electromagnetics, MoM-GEC method, rectennas, RF energy harvesting
Procedia PDF Downloads 1721188 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 691187 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 1691186 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 4361185 Interpretation and Clustering Framework for Analyzing ECG Survey Data
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 4701184 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5591183 The Influence of Social Interaction of Flat Occupants to Infrastucture Management of Kutobedah Flat in Malang City
Authors: Nony Rahadiva
Abstract:
The development of housing in urban areas can not be separated from the high rate of population growth from both natural population growth and population growth due to migration. The development is bounded by urban land area so that construction of flats become a development priority. Quality of residential flats are influenced by the patterns of behavior of its inhabitants. The frequency of contact between the occupants become one of the effects of good social relations, but harmful activity can degrade the environment, especially in flats. One of the social relationships that can be seen on the flats development is the residents in Kutobedah flat built in Malang city. Problems that occur in that place is unfavorable flat management due to social activities such as daily activities and also the neighboring activities of apartment dwellers who tend not to pay attention to the environment. Based on these problems we can do a study on social interaction in Kutobedah flat and its influence on the management of flat facilities and infrastructures. This research was carried out by submitting a questionnaire to the residents of the apartment based social activities , operations and maintenance of the flats. By using a weighted analysis, we can find that social interaction tenants is high, but the level of infrastructure and facilities management of the tenants is low so it is needed to counsel the residents how to use and maintain the infrastructure properly.Keywords: activities, flat, infrastructure management, social interaction
Procedia PDF Downloads 4321182 Performance of the Kindergarten Teachers and Its Relation to Pupils Achievement in Different Learning Areas
Authors: Mary Luna Mancao Ninal
Abstract:
This study aimed to determine the performance of the kindergarten teachers and its relation to pupils’ achievement in different learning areas in the Division of Kabankalan City. Using the standardized assessment and evaluation of the Department of Education secondary data, 100 kinder teachers and 2901 kinder pupils were investigated to determine the performance of the kindergarten teachers based on their Competency–Based Performance Appraisal System for Teachers and the periodic assessment of kinder pupils collected as secondary data. Weighted mean, Pearson–r, chi-square, Analysis of Variance were used in the study. Findings revealed that the kindergarten teacher respondents were 26-31 years old and most of them were female and married; they spent teaching for two years and less and passed the Licensure Examination for Teachers. They were very satisfactory as to instructional competences, school, and home and community involvement, personal, social, and professional characteristics. It also revealed that performance of the kindergarten pupils on their period of assessment shows that they were slightly advanced in their development. It also shows that domain as to performance of the kindergarten pupils were average overall development. Based on the results, it is recommended that Kindergarten teacher must augment their educational qualification and pursue their graduate studies and must develop the total personality of the children for them to achieve high advanced development to become productive individual.Keywords: performance, kindergarten teacher, learning areas, professional, pupil
Procedia PDF Downloads 3571181 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment
Authors: Leon Pan
Abstract:
The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning
Procedia PDF Downloads 591180 Analysis of ECGs Survey Data by Applying Clustering Algorithm
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 3511179 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1811178 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 1241177 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 1291176 Customer Behavior and Satisfaction of Domestic Low Cost Carrier in Chiang Mai, Thailand
Authors: Thiraporn Chumphuming, Nuttida Boonmathi, Supattra Thanomsiang, Tawatchai Noree, Suthee Boonchaloem, Rinyaphat Kecharananta
Abstract:
This research aims to study about the formats of low-cost airlines’ services in domestic route by surveying customers’ requirements and satisfactions in choosing low-cost airlines to travel domestically. Chiang Mai International Airport and other regions in Chiang Mai are the bases where the information is quantitatively collected. Passengers and questionnaires of 400 are the data base in which the researchers collected information from. Statistic units used are Percentage, Weighted Average, and Standard Deviation. The result of the study reveals that the group of 400 representative samples chooses Air Asia the most from overall six low-cost airlines that provide domestic services. Most of the representative samples book plane tickets for their traveling and they book tickets during the promotion time that provides cheap-priced tickets. Averagely, the price for a seat in one flight is around 501-1,000 Thai baht. The result of the satisfaction’s survey analyzed by the Marketing Mix Factors (7Ps) of low-cost airlines, which is divided into 4 parts including services before ticket reservations, services before boarding/purchasing tickets (ground), In-flight services, and Services after boarding they are satisfied with the baggage claim point informing, also gives the information that the passengers are highly satisfied with every process or the services.Keywords: low-cost airline, service, satisfaction, customers' behavior
Procedia PDF Downloads 2251175 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages
Authors: C. -L. Huang, J. -H. Ho
Abstract:
Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.Keywords: opinion mining, ontology, sentiment analysis, text mining
Procedia PDF Downloads 2321174 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet
Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia
Abstract:
Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization
Procedia PDF Downloads 1221173 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 701172 Sustainability Rating System for Infrastructure Projects in UAE
Authors: Amrutha Venugopal, Rabee Rustum
Abstract:
In spite of huge investments and the vital role infrastructure plays in the economy of UAE, the country has not yet developed an assessment scheme to measure the sustainability of infrastructure projects/development. The aim of this study was to develop a sustainability rating system for infrastructure projects in UAE using weighted indicator scoring. The identification of the list of 66 indicators was done by content analysis. The sources of content analysis were from government guidelines, research literature and sustainability rating system for infrastructure projects namely BCA Greenmark for Infrastructure (Singapore), ISCA (Australia) and Envision (USA). These indicators were shortlisted based on their relevance in the UAE. A mixture of qualitative and quantitative research methods is utilized to find the weightage to be applied to the indicators and to find suggestive measures to improve infrastructure sustainability in this region. Interviews and surveys were conducted with a good mix of experts from the industry. The data collected from the interviews were collated to provide suggestive measures for improving infrastructure sustainability. The collected survey data were analyzed using statistical analysis techniques to find the indicator weighing. The indicators were shortlisted by 75% to minimize the effort and investment into the process. The weighing of the deleted indicators was distributed among the critical clusters identified by Pareto analysis. Finally a simple Microsoft Excel tool was developed as the rating tool by using the calculated weighing for the indicators.Keywords: infrastructure, rating system, suggestive measures, sustainability, UAE
Procedia PDF Downloads 3061171 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables
Procedia PDF Downloads 6271170 Cultural Policies, Globalisation of Arts, and Impact on Cultural Heritage: A Contextual Analysis of France
Authors: Nasser AlShawaaf
Abstract:
While previous researchers have attempted to explain art museums commercialisation with reference to cultural policies, they have overlooked the phenomenon of globalisation. This study examines the causes and effects of globalisation of art museums in France. Building on arts literature, we show that the cultural policies of the French government since 1980s of cultural democratisation, cultural decentralisation, and implementing market principles on the cultural sector are leading to arts globalisation. Although globalisation is producing economic benefits and enhancing cultural reach, however, the damages include artistic values and creativity, cultural heritage and representation, and the museum itself. Art museums and host cities could overcome negative consequences through a hybrid collection display and develop local collections gradually.Keywords: cultural policy, cultural decentralisation, cultural globalisation, art museums, contextual analysis, France
Procedia PDF Downloads 1051169 Applying Element Free Galerkin Method on Beam and Plate
Authors: Mahdad M’hamed, Belaidi Idir
Abstract:
This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate holeKeywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods
Procedia PDF Downloads 2831168 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 5141167 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon
Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison
Abstract:
Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax
Procedia PDF Downloads 415