Search results for: heterogeneous massive data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25999

Search results for: heterogeneous massive data

24109 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 359
24108 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India

Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra

Abstract:

Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.

Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate

Procedia PDF Downloads 127
24107 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 147
24106 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
24105 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 289
24104 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 139
24103 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime

Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell

Abstract:

A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.

Keywords: crime, narrative, video, neighborhood

Procedia PDF Downloads 238
24102 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 38
24101 Screening of the Genes FOLH1 and MTHFR among the Mothers of Congenital Neural Tube Defected Babies in West Bengal, India

Authors: Silpita Paul, Susanta Sadhukhan, Biswanath Maity, Madhusudan Das

Abstract:

Neural tube defects (NTDs) are one of the most common forms of birth defect and affect ~300,000 new born worldwide each year. The prevalence is higher in Northern India (11 per 1000 birth) compare to southern India (5 per 1000 birth). NTDs are one of the common birth defects related with low blood folate and Hcy concentration. Though the mechanism is still unknown, but it is now established that, NTDs in human are polygenic in nature and follow the heterogeneous trait. In spite of its heterogeneity, polymorphism in few genes affects significantly the trait of NTDs. Polymorphisms in the genes FOLH1 and MTHFR plays important role in NTDs. In this study, the polymorphisms of these genes were screened by bi-directional sequencing from 30 mothers with NTD babies as case. The result revealed that 26.67% patients had bi-allelic FOLH1 polymorphism. The polymorphism has been identified as p.Y60H and frequent to cause NTDs. The study of MTHFR gene showed 2 different SNPs rs1801131 (at exon 4) and rs1801131 (at exon 7). The study showed 6.67% patients of both mono- and bi-allelic MTHFR-rs1801131 polymorphism and 6.67% patients of bi-allelic MTHFR-rs1801131 polymorphism. These polymorphisms has been responsible for p.A222V and p.E429A change respectively and frequently involved in NTD formation. Those polymorphisms affect mainly the absorption of dietary folate from intestine and the formation of 5-methylenetetrahydrofolate (5 MTHF) from 5,10-methylenetetrahydrofolate (5,10- MTHF), which is the functional folate form in our system. Though the study is not complete yet, but these polymorphisms play crucial roles in the formation of NTDs in other world population. Based on the result till date, it can be concluded that they also play significant role in our population too as in control samples we have not found any changes.

Keywords: neural tube defects, polymorphism, FOLH1, MTHFR

Procedia PDF Downloads 303
24100 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 480
24099 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution

Authors: Najrullah Khan, Athar Ali Khan

Abstract:

The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.

Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation

Procedia PDF Downloads 535
24098 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 219
24097 Standard Languages for Creating a Database to Display Financial Statements on a Web Application

Authors: Vladimir Simovic, Matija Varga, Predrag Oreski

Abstract:

XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.

Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange

Procedia PDF Downloads 394
24096 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 135
24095 Privacy Rights of Children in the Social Media Sphere: The Benefits and Challenges Under the EU and US Legislative Framework

Authors: Anna Citterbergova

Abstract:

This study explores the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, namely the GDPR (2018) and COPPA (2000). Considering that children are online for the majority of their free time, one cannot overlook the negative side effects that may be associated with online participation, which may put children’s wellbeing and their fundamental rights at risk. The question of whether the current relevant legislative framework in relation to the responsibilities of the internet service providers (ISPs) are adequate safeguards and guarantees to children’s personal data protection has been an evolving debate both in the US and in the EU. From a children’s rights perspective, processors of personal data have certain obligations that must meet the international human rights principles (e. g. the CRC, ECHR), which require taking into account the best interest of the child. Accordingly, the need to protect children’s privacy online remains strong and relevant with the expansion of the number and importance of social media platforms to human life. At the same time, the landscape of the internet is rapidly evolving, and commercial interests are taking a more targeted approach in seeking children’s data. Therefore, it is essential to constantly evaluate the ongoing and evolving newly adopted market policies of ISPs that may misuse the gap in the current letter of the law. Previous studies in the field have already pointed out that both GDPR and COPPA may theoretically not be sufficient in protecting children’s personal data. With the focus on social media platforms, this study uses the doctrinal-descriptive method to identifiy the mechanisms enshrined in the GDPR and COPPA designed to protect children’s personal data. In its second part, the study includes a data gathering phase by the national data protection authorities responsible for monitoring and supervision of the GDPR in relation to children’s personal data protection who monitor the enforcement of the data protection rules throughout the European Union an contribute to their consistent application. These gathered primary source of data will later be used to outline the series of benefits and challenges to children’s persona lata protection faced by these institutes and the analysis that aims to suggest if and/or how to hold ISPs accountable while striking a fair balance between the commercial rights and the right to protection of the personal data of children. The preliminary results can be divided into two categories. First, conclusions in the doctrinal-descriptive part of the study. Second, specific cases and situations from the practice of national data protection authorities. While for the first part, concrete conclusions can already be presented, the second part is currently still in the data gathering phase. The result of this research is a comprehensive analysis on the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, based on doctrinal-descriptive approach and original empirical data.

Keywords: personal data of children, personal data protection, GDPR, COPPA, ISPs, social media

Procedia PDF Downloads 96
24094 Modelling the Education Supply Chain with Network Data Envelopment Analysis

Authors: Sourour Ramzi, Claudia Sarrico

Abstract:

Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.

Keywords: supply chain, education, data envelopment analysis, network DEA

Procedia PDF Downloads 368
24093 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study

Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith

Abstract:

Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.

Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles

Procedia PDF Downloads 114
24092 Secure Transmission Scheme in Device-to-Device Multicast Communications

Authors: Bangwon Seo

Abstract:

In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.

Keywords: device-to-device communications, wiretap channel, secure transmission, precoding

Procedia PDF Downloads 291
24091 Online Shopping vs Privacy – Results of an Experimental Study

Authors: Andrzej Poszewiecki

Abstract:

The presented paper contributes to the experimental current of research on privacy. The question of privacy is being discussed at length at present, primarily among lawyers and politicians. However, the matter of privacy has been of interest for economists for some time as well. The valuation of privacy by people is of great importance now. This article is about how people valuate their privacy. An experimental method has been utilised in the conducted research – the survey was carried out among customers of an online store, and the studied issue was whether their readiness to sell their data (WTA) was different from the willingness to buy data back (WTP). The basic aim of this article is to analyse whether people shopping on the Internet differentiate their privacy depending on whether they protect or sell it. The achieved results indicate the presence of major differences in this respect, which do not always come up with the original expectations. The obtained results have supported the hypothesis that people are more willing to sell their data than to repurchase them. However, the hypothesis that the value of proposed remuneration affects the willingness to sell/buy back personal data (one’s privacy) has not been supported.

Keywords: privacy, experimental economics, behavioural economics, internet

Procedia PDF Downloads 293
24090 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
24089 Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits

Authors: O.Ofoegbu, S. Roongnapa, A.N. Eboatu

Abstract:

Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively.

Keywords: chitosan, dual-templated, methacrylic acid, mixed-toxicants, molecularly-imprinted-polymer

Procedia PDF Downloads 117
24088 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 318
24087 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
24086 A Qualitative Study Identifying the Complexities of Early Childhood Professionals' Use and Production of Data

Authors: Sara Bonetti

Abstract:

The use of quantitative data to support policies and justify investments has become imperative in many fields including the field of education. However, the topic of data literacy has only marginally touched the early care and education (ECE) field. In California, within the ECE workforce, there is a group of professionals working in policy and advocacy that use quantitative data regularly and whose educational and professional experiences have been neglected by existing research. This study aimed at analyzing these experiences in accessing, using, and producing quantitative data. This study utilized semi-structured interviews to capture the differences in educational and professional backgrounds, policy contexts, and power relations. The participants were three key professionals from county-level organizations and one working at a State Department to allow for a broader perspective at systems level. The study followed Núñez’s multilevel model of intersectionality. The key in Núñez’s model is the intersection of multiple levels of analysis and influence, from the individual to the system level, and the identification of institutional power dynamics that perpetuate the marginalization of certain groups within society. In a similar manner, this study looked at the dynamic interaction of different influences at individual, organizational, and system levels that might intersect and affect ECE professionals’ experiences with quantitative data. At the individual level, an important element identified was the participants’ educational background, as it was possible to observe a relationship between that and their positionality, both with respect to working with data and also with respect to their power within an organization and at the policy table. For example, those with a background in child development were aware of how their formal education failed to train them in the skills that are necessary to work in policy and advocacy, and especially to work with quantitative data, compared to those with a background in administration and/or business. At the organizational level, the interviews showed a connection between the participants’ position within the organization and their organization’s position with respect to others and their degree of access to quantitative data. This in turn affected their sense of empowerment and agency in dealing with data, such as shaping what data is collected and available. These differences reflected on the interviewees’ perceptions and expectations for the ECE workforce. For example, one of the interviewees pointed out that many ECE professionals happen to use data out of the necessity of the moment. This lack of intentionality is a cause for, and at the same time translates into missed training opportunities. Another interviewee pointed out issues related to the professionalism of the ECE workforce by remarking the inadequacy of ECE students’ training in working with data. In conclusion, Núñez’s model helped understand the different elements that affect ECE professionals’ experiences with quantitative data. In particular, what was clear is that these professionals are not being provided with the necessary support and that we are not being intentional in creating data literacy skills for them, despite what is asked of them and their work.

Keywords: data literacy, early childhood professionals, intersectionality, quantitative data

Procedia PDF Downloads 253
24085 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 512
24084 Tourism as Benefactor to Peace amidst the Structural Conflict: An Exploratory Case Study of Nepal

Authors: Pranil Kumar Upadhayaya

Abstract:

While peace is dividend to tourism, tourism can also be a vital force for world peace. The existing body of knowledge on a tripartite complex nexus between tourism, peace and conflict reveals that tourism is benefactor to peace and sensitive to conflict. By contextualizing the ongoing sporadic structural conflict in the transitional phase in the aftermath of a decade long (1996-2006), Maoist armed conflict in Nepal, the purpose of this study is to explore the potentials of tourism in peace-building. The outcomes of this research paper is based on the mixed methods of research (qualitative and quantitative). Though the armed conflict ended with the comprehensive peace agreement in 2006 but there is constant manifestations of non-violent structural conflicts, which continue to threaten the sustainability of tourism industry. With the persistent application of coping strategies, tourism is found resilient during the ongoing structural political conflict. The strong coping abilities of the private sector of tourism industry have also intersected with peace-building efforts with more reactive and less proactive (pro-peace) engagements. This paper ascertains about the application of the ‘theory of tourism security’ by Nepalese tourism industry while coping with conflict and reviving, and sustaining. It reveals that the multiple verities of tourism at present has heterogeneous degree of peace potentials. The opportunities of ‘peace through tourism’ can be promoted subject to its molding with responsible, sustainable and participatory characteristics. This paper comes out with pragmatic policy recommendations for strengthening the position of tourism as a true peace-builder: (a) a broad shift from mainstream conventional tourism to the community based rural with local participation and ownership to fulfill Nepal’s potentials for peace, and (b) building and applications of the managerial and operational codes of conducts for owners and workers (labor unions) at all tourism enterprises and strengthen their practices.

Keywords: code of conduct, community based tourism, conflict, peace-building, tourism

Procedia PDF Downloads 264
24083 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 272
24082 Mean Nutrient Intake and Nutrient Adequacy Ratio in India: Occurrence of Hidden Hunger in Indians

Authors: Abha Gupta, Deepak K. Mishra

Abstract:

The focus of food security studies in India has been on the adequacy of calories and its linkage with poverty level. India currently being undergoing a massive demographic and epidemiological transition has demonstrated a decline in average physical activity with improved mechanization and urbanization. Food consumption pattern is also changing with decreasing intake of coarse cereals and a marginal increase in the consumption of fruits, vegetables and meat products resulting into a nutrition transition in the country. However, deficiency of essential micronutrients such as vitamins and minerals is rampant despite their growing importance in fighting back with lifestyle and other modern diseases. The calorie driven studies can hardly tackle the complex problem of malnutrition. This paper fills these research lacuna and analyses mean intake of different major and micro-nutrients among different socio-economic groups and adequacy of these nutrients from recommended dietary allowance. For the purpose, a cross-sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of the state of Uttar Pradesh, India. Data on quantity consumed of 74 food items grouped into 10 food categories with a recall period of seven days was collected from the households and converted into energy, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, niacin and vitamin C using standard guidelines of National Institute of Nutrition. These converted nutrients were compared with recommended norms given by National Nutrition Monitoring Bureau. Per capita nutrient adequacy was calculated by dividing mean nutrient intake by the household size and then by comparing it with recommended norm. Findings demonstrate that source of both macro and micro-nutrients are mainly cereals followed by milk, edible oil and sugar items. Share of meat in providing essential nutrients is very low due to vegetarian diet. Vegetables, pulses, nuts, fruits and dry fruits are a poor source for most of the nutrients. Further analysis evinces that intake of most of the nutrients is higher than the recommended norm. Riboflavin is the only vitamin whose intake is less than the standard norm. Poor group, labour, small farmers, Muslims, scheduled caste demonstrate comparatively lower intake of all nutrients than their counterpart groups, though, they get enough macro and micro-nutrients significantly higher than the norm. One of the major reasons for higher intake of most of the nutrients across all socio-economic groups is higher consumption of monotonous diet based on cereals and milk. Most of the nutrients get their major share from cereals particularly wheat and milk intake. It can be concluded from the analysis that although there is adequate intake of most of the nutrients in the diet of rural population yet their source is mainly cereals and milk products depicting a monotonous diet. Hence, more efforts are needed to diversify the diet by giving more focus to the production of other food items particularly fruits, vegetables and pulse products. Awareness among the population, more accessibility and incorporating food items other than cereals in government social safety programmes are other measures to improve food security in India.

Keywords: hidden hunger, India, nutrients, recommended norm

Procedia PDF Downloads 316
24081 Challenges for Reconstruction: A Case Study from 2015 Gorkha, Nepal Earthquake

Authors: Hari K. Adhikari, Keshab Sharma, K. C. Apil

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 hit the central region of Nepal on April 25, 2015; with the epicenter about 77 km northwest of Kathmandu Valley. This paper aims to explore challenges of reconstruction in the rural earthquake-stricken areas of Nepal. The Gorkha earthquake on April 25, 2015, has significantly affected the livelihood of people and overall economy in Nepal, causing severe damage and destruction in central Nepal including nation’s capital. A larger part of the earthquake affected area is difficult to access with rugged terrain and scattered settlements, which posed unique challenges and efforts on a massive scale reconstruction and rehabilitation. 800 thousand buildings were affected leaving 8 million people homeless. Challenge of reconstruction of optimum 800 thousand houses is arduous for Nepal in the background of its turmoil political scenario and weak governance. With significant actors involved in the reconstruction process, no appreciable relief has reached to the ground, which is reflected over the frustration of affected people. The 2015 Gorkha earthquake is one of most devastating disasters in the modern history of Nepal. Best of our knowledge, there is no comprehensive study on reconstruction after disasters in modern Nepal, which integrates the necessary information to deal with challenges and opportunities of reconstructions. The study was conducted using qualitative content analysis method. Thirty engineers and ten social mobilizes working for reconstruction and more than hundreds local social workers, local party leaders, and earthquake victims were selected arbitrarily. Information was collected through semi-structured interviews and open-ended questions, focus group discussions, and field notes, with no previous assumption. Author also reviewed literature and document reviews covering academic and practitioner studies on challenges of reconstruction after earthquake in developing countries such as 2001 Gujarat earthquake, 2005 Kashmir earthquake, 2003 Bam earthquake and 2010 Haiti earthquake; which have very similar building typologies, economic, political, geographical, and geological conditions with Nepal. Secondary data was collected from reports, action plans, and reflection papers of governmental entities, non-governmental organizations, private sector businesses, and the online news. This study concludes that inaccessibility, absence of local government, weak governance, weak infrastructures, lack of preparedness, knowledge gap and manpower shortage, etc. are the key challenges of the reconstruction after 2015 earthquake in Nepal. After scrutinizing different challenges and issues, study counsels that good governance, integrated information, addressing technical issues, public participation along with short term and long term strategies to tackle with technical issues are some crucial factors for timely and quality reconstruction in context of Nepal. Sample collected for this study is relatively small sample size and may not be fully representative of the stakeholders involved in reconstruction. However, the key findings of this study are ones that need to be recognized by academics, governments, and implementation agencies, and considered in the implementation of post-disaster reconstruction program in developing countries.

Keywords: Gorkha earthquake, reconstruction, challenges, policy

Procedia PDF Downloads 409
24080 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review

Authors: Tigabu Dagne Akal

Abstract:

Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.

Keywords: EHR, EMR, Big data, Big data analytics, resource-based view

Procedia PDF Downloads 131