Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1892
Search results for: Muhammad Fauzi Abdul Ghani
2 Critiquing Israel as Child Abuse: How Colonial White Feminism Disrupts Critical Pedagogies of Culturally Responsive and Relevant Practices and Inclusion through Ongoing and Historical Maternalism and Neoliberal Settler Colonialism
Authors: Wafaa Hasan
Abstract:
In May of 2022, Palestinian parents in Toronto, Canada, became aware that educators and staff in the Toronto District School Board were attempting to include the International Holocaust and Remembrance Definition of Antisemitism (IHRA) in The Child Abuse and Neglect Policy of the largest school board in Canada, The Toronto District School Board (TDSB). The idea was that if students were to express any form of antisemitism, as defined by the IHRA, then an investigation could follow with Child Protective Services (CPS). That is, the student’s parents could be reported to the state and investigated for custodial rights to their children. The TDSB has set apparent goals for “Decolonizing Pedagogy” (“TDSB Equity Leadership Competencies”), Culturally Responsive and Relevant Practices (CRRP) and inclusive education. These goals promote the centering of colonized, racialized and marginalized voices. CRRP cannot be effective without the application of anti-racist and settler colonial analyses. In order for CRRP to be effective, school boards need a comprehensive understanding of the ways in which the vilification of Palestinians operates through anti-indigenous and white supremacist systems and logic. Otherwise, their inclusion will always be in tension with the inclusion of settler colonial agendas and worldviews. Feminist maternalism frames racial mothering as degenerate (viewing the contributions of racialized students and their parents as products of primitive and violent cultures) and also indirectly inhibits the actualization of the tenets of CRRP and inclusive education through its extensions into the welfare state and public education. The contradiction between the tenets of CRRP and settler colonial systems of erasure and repression is resolved by the continuation of tactics to 1) force assimilation, 2) punish those who push back on that assimilation and 3) literally fragment familial and community structures of racialized students, educators and parents. This paper draws on interdisciplinary (history, philosophy, anthropology) critiques of white feminist “maternalism” from the 19th century onwards in North America and Europe (Jacobs, Weber), as well as “anti-racist education” theory (Dei), and more specifically,” culturally responsive learning,” (Muhammad) and “bandwidth” pedagogy theory (Verschelden) to make its claims. This research contributes to vibrant debates about anti-racist and decolonial pedagogies in public education systems globally. This paper also documents first-hand interviews and experiences of diasporic Palestinian mothers and motherhoods and situates their experiences within longstanding histories of white feminist maternalist (and eugenicist) politics. This informal qualitative data from "participatory conversations" (Swain) is situated within a set of formal interview data collected with Palestinian women in the West Bank (approved by the McMaster University Humanities Research Ethics Board) relating to white feminist maternalism in the peace and dialogue industry.Keywords: decolonial feminism, maternal feminism, anti-racist pedagogies, settler colonial studies, motherhood studies, pedagogy theory, cultural theory
Procedia PDF Downloads 771 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 70