Search results for: Learning Evaluation
11028 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing
Authors: Angela Luft, Sebastian Bremen, Nicolae Balc
Abstract:
Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement
Procedia PDF Downloads 15711027 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse
Procedia PDF Downloads 44211026 The Effect of Articial Intelligence on Physical Education Analysis and Sports Science
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 6011025 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective
Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar
Abstract:
There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts
Procedia PDF Downloads 11411024 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 5611023 A Protocol for Usability of Teaching to Students with Learning Difficulties at University: An Italian Research
Authors: Tamara Zappaterra
Abstract:
The Learning Difficulties have an evolutionary nature. The international research has focused its analysis on the characteristics of Learning Difficulties in childhood, but we are still far from a thorough understanding of the nature of such disorders in adolescence and adulthood. Such issues become even more urgent in the university context. Spelling, meaning, and appropriate use of the specific vocabulary of the various disciplines represent an additional challenge for the dyslexic student. This paper explores the characteristics of Learning Difficulties in adulthood and the impact with the university teaching. It presents the results of an interdisciplinary project (educational, medical and engineering area) at University of Florence. The purpose of project is to design of a protocol for usability of teaching and individual study at university level. The project, after a first reconnaissance of user needs that have been reached with the participation of the very same protagonists, is at the stage of guidelines drafting for inclusion and education, to be used by teachers, students and administrative staff. The methodologies used are a questionnaire built on purpose and a series of focus groups with users. For collecting data during the focus groups it was decided to use a method typical of the Quality Function Deployment, a tool originally used for quality management, whose versatility makes it easy to use in a number of different context. The paper presents furthermore the findings of the project, the most significant elements of the guidelines for teaching, i.e. the section for teachers, whose aim is to implement a Learning Difficulties-friendly teaching, even at the university level, in compliance with italian Law 170/2010. The Guidelines for the didactic and inclusion of Learning Difficulties students of the University of Florence are articulated around a global and systemic plan of action, meant to accompany and protect the students during their study career, even before enrolling at the University, with different declination: the logistical, relational, educational, and didactic levels have been considered. These guidelines in Italy received the endorsement of the CNUDD. It is a systemic intervention plan for Learning Difficulties students, which roused and keeps rousing the interest of all the university system, with a radical consideration on academic teaching. Since while we try to provide the best Learning Difficulties-friendly didactic in compliance with the rules, no one can be exempted from a wider consideration on the nature and the quality of university teaching offered to all students.Keywords: didactic tools, learning difficulties, special and inclusive education, university teaching
Procedia PDF Downloads 28311022 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 28511021 Educational Tours as a Learning Tool to the Third Years Tourism Students of De La Salle University, Dasmarinas
Authors: Jackqueline Uy, Hannah Miriam Verano, Crysler Luis Verbo, Irene Gueco
Abstract:
Educational tours are part of the curriculum of the College of Tourism and Hospitality Management, De La Salle University-Dasmarinas. They are highly significant to the students, especially Tourism students. The purpose of this study was to determine how effective educational tours were as a learning tool using the Experiential Learning Theory by David Kolb. This study determined the demographic profile of the third year tourism students in terms of gender, section, educational tours joined, and monthly family income and lastly, this study determined if there is a significant difference between the demographic profile of the respondents and their assessment of educational tours as a learning tool. The researchers used a historical research design with the third-year students of the bachelor of science in tourism management as the population size and used a random sampling method. The researchers made a survey questionnaire and utilized statistical tools such as weighted mean, frequency distribution, percentage, standard deviation, T-test, and ANOVA. The result of the study answered the profile of the respondents such as the gender, section, educational tour/s joined, and family monthly income. The findings of the study showed that the 3rd year tourism management students strongly agree that educational tours are a highly effective learning tool in terms of active experimentation, concrete experience, reflective observation, and abstract conceptualisation based on the data gathered from the respondents.Keywords: CTHM, educational tours, experiential learning theory, De La Salle University Dasmarinas, tourism
Procedia PDF Downloads 17311020 Different Perceptions of Distance and Full-time Teaching Depending on Different Cultural Backgrounds: A Comparative Study
Authors: Daniel Ecler
Abstract:
This paper aims to compare the data obtained using semi-structured questionnaires and find some connections between them, which could help to understand what factors affect the perception of the advantages and disadvantages of distance learning compared to conventional education. The data collected came from respondents from Czech and Chinese university students, and expectations were such that the different cultural environments from which the two groups come would have an impact on different experiences of distance education. With the help of variation-finding comparison, it turned out that Chinese students did not have such difficulties with the transition to distance learning as students from the Czech Republic, as most of them came into contact with some form of distance education in the past. In addition, it has also been shown that Chinese students use modern technology to a much greater extent, which has also made it easier for them to become accustomed to another form of teaching. In conclusion, Chinese students have greater preconditions for easier management of distance learning, while Czech students prefer more personal contact, and thus full-time teaching. It is obvious that both approaches have their pros and cons; now, it is necessary to find out how to use them for maximum efficiency of the educational process.Keywords: Chinese college students, cultural background, Czech college students, distance learning, full-time teaching
Procedia PDF Downloads 15111019 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 13411018 Serious Game for Learning: A Model for Efficient Game Development
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
In recent years, serious games have started to gain an increasing interest as a tool to support learning across different educational and training fields. It began to serve as a powerful educational tool for improving learning outcomes. In this research, we discuss the potential of virtual experiences and games research outside of the games industry and explore the multifaceted impact of serious games and related technologies on various aspects of our lives. We highlight the usage of serious games as a tool to improve education and other applications with a purpose beyond the entertainment industry. One of the main contributions of this research is proposing a model that facilitates the design and development of serious games in a flexible and easy-to-use way. This is achieved by exploring different requirements to develop a model that describes a serious game structure with a focus on both aspects of serious games (educational and entertainment aspects).Keywords: game development, requirements, serious games, serious game model
Procedia PDF Downloads 5811017 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.Keywords: avatar-based, virtual environment, paired learning, individual differences
Procedia PDF Downloads 11611016 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 15711015 Meta-Instruction Theory in Mathematics Education and Critique of Bloom’s Theory
Authors: Abdollah Aliesmaeili
Abstract:
The purpose of this research is to present a different perspective on the basic math teaching method called meta-instruction, which reverses the learning path. Meta-instruction is a method of teaching in which the teaching trajectory starts from brain education into learning. This research focuses on the behavior of the mind during learning. In this method, students are not instructed in mathematics, but they are educated. Another goal of the research is to "criticize Bloom's classification in the cognitive domain and reverse it", because it cannot meet the educational and instructional needs of the new generation and "substituting math education instead of math teaching". This is an indirect method of teaching. The method of research is longitudinal through four years. Statistical samples included students ages 6 to 11. The research focuses on improving the mental abilities of children to explore mathematical rules and operations by playing only with eight measurements (any years 2 examinations). The results showed that there is a significant difference between groups in remembering, understanding, and applying. Moreover, educating math is more effective than instructing in overall learning abilities.Keywords: applying, Bloom's taxonomy, brain education, mathematics teaching method, meta-instruction, remembering, starmath method, understanding
Procedia PDF Downloads 2311014 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme
Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey
Abstract:
In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.Keywords: e-voting preparation stage, blind signature protocol, Nonce based authentication scheme, Kerberos Authentication Protocol, pseudo voter identity scheme PVID
Procedia PDF Downloads 29911013 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.Keywords: bilingualism, foreign language learning, l2 acquisition, willingness to communicate
Procedia PDF Downloads 30211012 Educational Diagnosis and Evaluation Processes of Disabled Preschoolers in Turkey: Family Opinions
Authors: Şule Yanık, Hasan Gürgür
Abstract:
It is thought that it is important for disabled children to have the opportunity to benefit preschool education that smoothens transition process to formal education, and for the constitution of a precondition for their success. Within this context, it is important for the disabled in Turkey to be evaluated medically firstly and then educational-wise in order for them to benefit early inclusive education. Thus, disabled people are both diagnosed in hospitals and at Guidance and Research Centers (GRC) attached to Ministry of Education educational-wise. It is seen that standard evaluation tools are used and evaluations are done by special education teachers (SET) in order for educational diagnosis and evaluation (EDAE) to be realized. The literature emphasizes the importance of informal evaluation tools as well as formal ones. According to this, it is thought that another party, besides students in EDAE process and SETs, is family, because families are primary care takers for their children, and that the most correct and real information can be obtained via families beside results of educational evaluation processes (EEP). It is thought that obtaining opinions of families during EEP is important to be able to exhibit the present EDAE activities in Turkey, materialize any existing problems, and increase quality of the process. Within this context, the purpose of this study is to exhibit experiences regarding EDAE processes of 10 families having preschool children with hearing loss (CHL). The process of research is designed to be descriptive based on qualitative research paradigms. Data were collected via semi-structured interview questions, and the themes were obtained. As a result, it is seen that families, after they realize the hearing loss of their children, do not have any information regarding the subject, and that they consult to an ear-nose-throat doctor or an audiologist for support. It is seen that families go to hospitals for medical evaluation which is a pre-requisite for benefiting early education opportunities. However, during this process, as some families do not have any experience of having a CHL, it is seen that they are late for medical evaluation and hearing aids. Moreover, families stated that they were directed to GRC via audiologists for educational evaluation. Families stated that their children were evaluated regarding language, academic and psychological development in proportion with their ages in GRC after they were diagnosed medically. However, families stated that EEP realized in GRC was superficial, short and lacked detail. It is seen that many families were not included in EEP process, whereas some families stated that they were asked questions because their children are too small to answer. Regarding the benefits of EEP for themselves and their children, families stated that GRC had to give a report to them for benefiting the free support of Special Education and Rehabilitation Center, and that families had to be directed to inclusive education. As a result, it is seen that opinions of families regarding EDAE processes at GRC indicate inefficiency of the process as it is short and superficial, regardless being to the point.Keywords: children with hearing loss, educational diagnosis and evaluation, guidance and research center, inclusion
Procedia PDF Downloads 23311011 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface
Procedia PDF Downloads 35311010 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles
Authors: Wanwadee Neamsakul
Abstract:
VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum
Procedia PDF Downloads 15011009 STEM (Science–Technology–Engineering–Mathematics) Based Entrepreneurship Training, Within a Learning Company
Authors: Diana Mitova, Krassimir Mitrev
Abstract:
To prepare the current generation for the future, education systems need to change. It implies a way of learning that meets the demands of the times and the environment in which we live. Productive interaction in the educational process implies an interactive learning environment and the possibility of personal development of learners based on communication and mutual dialogue, cooperation and good partnership in decision-making. Students need not only theoretical knowledge, but transferable skills that will help them to become inventors and entrepreneurs, to implement ideas. STEM education , is now a real necessity for the modern school. Through learning in a "learning company", students master examples from classroom practice, simulate real life situations, group activities and apply basic interactive learning strategies and techniques. The learning company is the subject of this study, reduced to entrepreneurship training in STEM - technologies that encourage students to think outside the traditional box. STEM learning focuses the teacher's efforts on modeling entrepreneurial thinking and behavior in students and helping them solve problems in the world of business and entrepreneurship. Learning based on the implementation of various STEM projects in extracurricular activities, experiential learning, and an interdisciplinary approach are means by which educators better connect the local community and private businesses. Learners learn to be creative, experiment and take risks and work in teams - the leading characteristics of any innovator and future entrepreneur. This article presents some European policies on STEM and entrepreneurship education. It also shares best practices for training company training , with the integration of STEM in the learning company training environment. The main results boil down to identifying some advantages and problems in STEM entrepreneurship education. The benefits of using integrative approaches to teach STEM within a training company are identified, as well as the positive effects of project-based learning in a training company using STEM. Best practices for teaching entrepreneurship through extracurricular activities using STEM within a training company are shared. The following research methods are applied in this research paper: Theoretical and comparative analysis of principles and policies of European Union countries and Bulgaria in the field of entrepreneurship education through a training company. Experiences in entrepreneurship education through extracurricular activities with STEM application within a training company are shared. A questionnaire survey to investigate the motivation of secondary vocational school students to learn entrepreneurship through a training company and their readiness to start their own business after completing their education. Within the framework of learning through a "learning company" with the integration of STEM, the activity of the teacher-facilitator includes the methods: counseling, supervising and advising students during work. The expectation is that students acquire the key competence "initiative and entrepreneurship" and that the cooperation between the vocational education system and the business in Bulgaria is more effective.Keywords: STEM, entrepreneurship, training company, extracurricular activities
Procedia PDF Downloads 9611008 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14011007 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 60211006 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK
Authors: Catherine Mangan, Beth Anderson
Abstract:
There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment
Procedia PDF Downloads 17511005 The Role of Vocabulary in Task-based Language Teaching in International and Iranian Contexts
Authors: Parima Fasih
Abstract:
The present review of literature explored the role of vocabulary in task-based language teaching (TBLT). The first focus of the present paper is to explain different aspects of vocabulary knowledge, and it continues with an introduction to TBLT. Second, the role of vocabulary and vocabulary tasks in TBLT is explained. Next, an overview of the recent empirical studies about task-based vocabulary teaching in international and Iranian contexts context is presented to address the research question concerning the effect of task-based vocabulary teaching on EFL learners' vocabulary learning. Based on the conclusions that are drawn from the previous studies, the implications reveal how the findings influence students' vocabulary learning and teachers' vocabulary teaching methods.Keywords: vocabulary, task, task-based, task-based language teaching, vocabulary learning, vocabulary teaching
Procedia PDF Downloads 12911004 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 14911003 Survey on Resilience of Chinese Nursing Interns: A Cross-Sectional Study
Authors: Yutong Xu, Wanting Zhang, Jia Wang, Zihan Guo, Weiguang Ma
Abstract:
Background: The resilience education of intern nursing students has significant implications for the development and improvement of the nursing workforce. The clinical internship period is a critical time for enhancing resilience. Aims: To evaluate the resilience level of Chinese nursing interns and identify the factors affecting resilience early in their careers. Methods: The cross-sectional study design was adopted. From March 2022 to May 2023, 512 nursing interns in tertiary care hospitals were surveyed online with the Connor-Davidson Resilience Scale, the Clinical Learning Environment scale for Nurse, and the Career Adapt-Abilities Scale. Structural equation modeling was used to clarify the relationships among these factors. Indirect effects were tested using bootstrapped Confidence Intervals. Results: The nursing interns showed a moderately high level of resilience[M(SD)=70.15(19.90)]. Gender, scholastic attainment, had a scholarship, career adaptability and clinical learning environment were influencing factors of nursing interns’ resilience. Career adaptability and clinical learning environment positively and directly affected their resilience level (β = 0.58, 0.12, respectively, p<0.01). career adaptability also positively affected career adaptability (β = 0.26, p < 0.01), and played a fully mediating role in the relationship between clinical learning environment and resilience. Conclusion: Career adaptability can enhance the influence of clinical learning environment on resilience. The promotion of career adaptability and the clinical teaching environment should be the potential strategies for nursing interns to improve their resilience, especially for those female nursing interns with low academic performance. Implications for Nursing Educators Nursing educators should pay attention to the cultivation of nursing students' resilience; for example, by helping them integrate to the clinical learning environment and improving their career adaptability. Reporting Method: The STROBE criteria were used to report the results of the observations critically. Patient or Public Contribution No patient or public contribution.Keywords: resilience, clinical learning environment, career adaptability, nursing interns
Procedia PDF Downloads 8911002 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 17411001 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement
Authors: Fiona Wahr, Sitalakshmi Venkatraman
Abstract:
Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.Keywords: enabling skills, student retention, embedded learning support, continuous improvement
Procedia PDF Downloads 24811000 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran
Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan
Abstract:
While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.Keywords: regional knowledge networks, learning regions, interactive learning, innovation
Procedia PDF Downloads 17910999 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 127