Search results for: LMS–learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29621

Search results for: LMS–learning management system

27731 Knowledge Management as Tool for Environmental Management System Implementation in Higher Education Institutions

Authors: Natalia Marulanda Grisales

Abstract:

The most significant changes in the characteristics of consumers have contributed to the development and adoption of methodologies and tools that enable organizations to be more competitive in the marketplace. One of these methodologies is the integration of Knowledge Management (KM) phases and Environmental Management Systems (EMS). This integration allows companies to manage and share the required knowledge for EMS adoption, from the place where it is generated to the place where it is going to be exploited. The aim of this paper is to identify the relationship between KM phases as a tool for the adoption of EMS in HEI. The methodology has a descriptive scope and a qualitative approach. It is based on a case study and a review of the literature about KM and EMS. We conducted 266 surveys to students, professors and staff at Minuto de Dios University (Colombia). Data derived from the study indicate that if a HEI wants to achieve an adequate knowledge acquisition and knowledge transfer, it must have clear goals for implementing an EMS. Also, HEI should create empowerment and training spaces for students, professors and staff. In the case study, HEI must generate alternatives that enhance spaces of knowledge appropriation. It was found that 85% of respondents have not received any training from HEI about EMS. 88% of respondents believe that the actions taken by the university are not efficient to knowledge transfer in order to develop an EMS.

Keywords: environmental management systems, higher education institutions, knowledge management, training

Procedia PDF Downloads 372
27730 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
27729 Participatory Approach of Flood Disaster Risk Reduction

Authors: Laxman Budhathoki, Lal Bahadur Shrestha, K. C. Laxman

Abstract:

Hundreds of people are being lost their life by flood disaster in Nepal every year. Community-based disaster management committee has formed to formulate the disaster management plan including the component of EWS like EWS tower, rain gauge station, flood gauge station, culverts, boats, ropes, life jackets, a communication mechanism, emergency shelter, Spur, dykes, dam, evacuation route, emergency dry food management etc. Now EWS become a successful tool to decrease the human casualty from 13 to 0 every year in Rapti River of Chitwan District.

Keywords: disaster risk reduction, early warning system, flood, participatory approach

Procedia PDF Downloads 354
27728 Challenges to Collaborative Learning in Architectural Education in the Middle East

Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan

Abstract:

Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.

Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience

Procedia PDF Downloads 331
27727 Use of Cloud-Based Virtual Classroom in Connectivism Learning Process to Enhance Information Literacy and Self-Efficacy for Undergraduate Students

Authors: Kulachai Kultawanich, Prakob Koraneekij, Jaitip Na-Songkhla

Abstract:

The way of learning has been changed into a new paradigm since the improvement of network and communication technology, so learners have to interact with massive amount of the information. Thus, information literacy has become a critical set of abilities required by every college and university in the world. Connectivism is considered to be an alternative way to design information literacy course in online learning environment, such as Virtual Classroom (VC). With the change of learning pedagogy, VC is employed to improve the social capability by integrating cloud-based technology. This paper aims to study the use of Cloud-based Virtual Classroom (CBVC) in Connectivism learning process to enhance information literacy and self-efficacy of twenty-one undergraduate students who registered in an e-publishing course at Chulalongkorn University. The data were gathered during 6 weeks of the study by using the following instruments: (1) Information literacy test (2) Information literacy rubrics (3) Information Literacy Self-Efficacy (ILSE) Scales and (4) Questionnaire. The result indicated that students have information literacy and self-efficacy posttest mean scores higher than pretest mean scores at .05 level of significant after using CBVC in Connectivism learning process. Additionally, the study identified that the Connectivism learning process proved useful for developing information rich environment and a sense of community, and the CBVC proved useful for developing social connection.

Keywords: cloud-based, virtual classroom, connectivism, information literacy

Procedia PDF Downloads 453
27726 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria

Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike

Abstract:

The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.

Keywords: influence, land, trend, value

Procedia PDF Downloads 364
27725 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study

Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil

Abstract:

It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.

Keywords: active learning, education, integrated, interactive, self-learning, tutorials

Procedia PDF Downloads 315
27724 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 164
27723 Pre and Post IFRS Loss Avoidance in France and the United Kingdom

Authors: T. Miková

Abstract:

This paper analyzes the effect of a single uniform accounting rule on reporting quality by investigating the influence of IFRS on earnings management. This paper examines whether earnings management is reduced after IFRS adoption through the use of “loss avoidance thresholds”, a method that has been verified in earlier studies. This paper concentrates on two European countries: one that represents the continental code law tradition with weak protection of investors (France) and one that represents the Anglo-American common law tradition, which typically implies a strong enforcement system (the United Kingdom). The research investigates a sample of 526 companies (6822 firm-year observations) during the years 2000 – 2013. The results are different for the two jurisdictions. This study demonstrates that a single set of accounting standards contributes to better reporting quality and reduces the pervasiveness of earnings management in France. In contrast, there is no evidence that a reduction in earnings management followed the implementation of IFRS in the United Kingdom. Due to the fact that IFRS benefit France but not the United Kingdom, other political and economic factors, such legal system or capital market strength, must play a significant role in influencing the comparability and transparency cross-border companies’ financial statements. Overall, the result suggests that IFRS moderately contribute to the accounting quality of reported financial statements and bring benefit for stakeholders, though the role played by other economic factors cannot be discounted.

Keywords: accounting standards, earnings management, international financial reporting standards, loss avoidance, reporting quality

Procedia PDF Downloads 198
27722 Financial Management Performance in Organization Profitability

Authors: Adekunle Olakunle Felix

Abstract:

Research will be based on the financial management importance within organization and its important role in non-economic and economic activities that provide us the useful information about the efficient procurement and utilization of finance in a profitable manner. Due to industrialization, financial management become a vital part of business and it is very important for the business concern that with a good financial management to earn maximum profit.

Keywords: management, business, profitability, organization, financial, efficiency

Procedia PDF Downloads 359
27721 The Use of the Mediated Learning Experience in Response of Special Needs Education

Authors: Maria Luisa Boninelli

Abstract:

This study wants to explore the effects of a mediated intervention program in a primary school. The participants where 120 students aged 8-9, half of them Italian and half immigrants of first or second generation. The activities consisted on the cognitive enhancement of the participants through Feuerstein’s Instrumental Enrichment, (IE) and on an activity centred on body awareness and mediated learning experience. Given that there are limited studied on learners in remedial schools, the current study intented to hypothesized that participants exposed to mediation would yiel a significant improvement in cognitive functioning. Hypothesis One proposed that, following the intervention, improved Q1vata scores of the participants would occur in each of the groups. Hypothesis two postulated that participants within the Mediated Learning Experience would perform significantly better than those group of control. For the intervention a group of 60 participants constituted a group of Mediation sample and were exposed to Mediated Learning Experience through Enrichment Programm. Similiary the other 60 were control group. Both the groups have students with special needs and were exposed to the same learning goals. A pre-experimental research design, in particular a one-group pretest-posttest approach was adopted. All the participants in this study underwent pretest and post test phases whereby they completed measures according to the standard instructions. During the pretest phase, all the participants were simultaneously exposed to Q1vata test for logical and linguistic evaluation skill. During the mediation intervention, significant improvement was demonstrated with the group of mediation. This supports Feuerstein's Theory that initial poor performance was a result of a lack of mediated learning experience rather than inherent difference or deficiencies. Furthermore the use of an appropriate mediated learning enabled the participants to function adequately.

Keywords: cognitive structural modifiability, learning to learn, mediated learning experience, Reuven Feuerstein, special needs

Procedia PDF Downloads 378
27720 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 119
27719 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
27718 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system

Procedia PDF Downloads 369
27717 A Survey on Ambient Intelligence in Agricultural Technology

Authors: C. Angel, S. Asha

Abstract:

Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.

Keywords: ambient intelligence, agricultural technology, smart agriculture, precise farming

Procedia PDF Downloads 606
27716 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 175
27715 Exploring Moroccan Teachers Beliefs About Multilingualism

Authors: Belkhadir Radouane

Abstract:

In this study, author tried to explore the beliefs of some Moroccan teachers working in the delegations of Safi and Youcefia about the usefulness of first and second languages in learning the third language. More specifically, author attempted to see the extent to which these teachers believe that a first and second language can serve students in learning a third one. The first language in this context is Arabic, the second is French, and the third is English. The teachers’ beliefs were gathered through a questionnaire that was addressed via Google Forms. Then, the results were analyzed using the same application. It was found that teachers are positive about the usefulness of the first and second language in learning the third one, but most of them rarely use in a conscious way activities that serve this purpose.

Keywords: Bilinguilism, teachers beliefs, English as ESL, Morocco

Procedia PDF Downloads 55
27714 Optimization and Energy Management of Hybrid Standalone Energy System

Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif

Abstract:

Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.

Keywords: energy management, hybrid system, renewable energy, remote area, optimization

Procedia PDF Downloads 199
27713 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 144
27712 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 199
27711 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
27710 Learners' Attitudes and Expectations towards Digital Learning Paths

Authors: Eirini Busack

Abstract:

Since the outbreak of the Covid-19 pandemic and the sudden transfer to online teaching, teachers have struggled to reconstruct their teaching and learning materials to adapt them to the new reality of online teaching and learning. Consequently, the pupils’ learning was disrupted during this orientation phase. Due to the above situation, teachers from all fields concluded that it is vital that their pupils should be able to continue their learning even without the teacher being physically present. Various websites and applications have been in use since then in hope that pupils will still enjoy a qualitative education; unfortunately, this was often not the case. To address this issue, it was therefore decided to focus the research on the development of digital learning paths. The fundamentals of these learning paths include the implementation of scenario-based learning (digital storytelling), the integration of media-didactic theory to make it pedagogically appropriate for learners, alongside instructional design knowledge and the drive to promote autonomous learners. This particular research is being conducted within the frame of the research project “Sustainable integration of subject didactic digital teaching-learning concepts” (InDiKo, 2020-2023), which is currently conducted at the University of Education Karlsruhe and investigates how pre-service teachers can acquire the necessary interdisciplinary and subject-specific media-didactic competencies to provide their future learners with digitally enhanced learning opportunities, and how these competencies can be developed continuously and sustainably. As English is one of the subjects involved in this project, the English Department prepared a seminar for the pre-service secondary teachers: “Media-didactic competence development: Developing learning paths & Digital Storytelling for English grammar teaching.” During this seminar, the pre-service teachers plan and design a Moodle-based differentiated lesson sequence on an English grammar topic that is to be tested by secondary school pupils. The focus of the present research is to assess the secondary school pupils’ expectations from an English grammar-focused digital learning path created by pre-service English teachers. The nine digital learning paths that are to be distributed to 25 pupils were produced over the winter and the current summer semester as the artifact of the seminar. Finally, the data to be quantitatively analysed and interpreted derive from the online questionnaires that the secondary school pupils fill in so as to reveal their expectations on what they perceive as a stimulating and thus effective grammar-focused digital learning path.

Keywords: digital storytelling, learning paths, media-didactics, autonomous learning

Procedia PDF Downloads 81
27709 Constructivist Grounded Theory of Intercultural Learning

Authors: Vaida Jurgile

Abstract:

Intercultural learning is one of the approaches taken to understand the cultural diversity of the modern world and to accept changes in cultural identity and otherness and the expression of tolerance. During intercultural learning, students develop their abilities to interact and communicate with their group members. These abilities help to understand social and cultural differences, to form one’s identity, and to give meaning to intercultural learning. Intercultural education recognizes that a true understanding of differences and similarities of another culture is necessary in order to lay the foundations for working together with others, which contributes to the promotion of intercultural dialogue, appreciation of diversity, and cultural exchange. Therefore, it is important to examine the concept of intercultural learning, revealed through students’ learning experiences and understanding of how this learning takes place and what significance this phenomenon has in higher education. At a scientific level, intercultural learning should be explored in order to uncover the influence of cultural identity, i.e., intercultural learning should be seen in a local context. This experience would provide an opportunity to learn from various everyday intercultural learning situations. Intercultural learning can be not only a form of learning but also a tool for building understanding between people of different cultures. The research object of the study is the process of intercultural learning. The aim of the dissertation is to develop a grounded theory of the process of learning in an intercultural study environment, revealing students’ learning experiences. The research strategy chosen in this study is a constructivist grounded theory (GT). GT is an inductive method that seeks to form a theory by applying the systematic collection, synthesis, analysis, and conceptualization of data. The targeted data collection was based on the analysis of data provided by previous research participants, which revealed the need for further research participants. During the research, only students with at least half a year of study experience, i.e., who have completed at least one semester of intercultural studies, were purposefully selected for the research. To select students, snowballing sampling was used. 18 interviews were conducted with students representing 3 different fields of sciences (social sciences, humanities, and technology sciences). In the process of intercultural learning, language expresses and embodies cultural reality and a person’s cultural identity. It is through language that individual experiences are expressed, and the world in which Others exist is perceived. The increased emphasis is placed on the fact that language conveys certain “signs’ of communication and perception with cultural value, enabling the students to identify the Self and the Other. Language becomes an important tool in the process of intercultural communication because it is only through language that learners can communicate, exchange information, and understand each other. Thus, in the process of intercultural learning, language either promotes interpersonal relationships with foreign students or leads to mutual rejection.

Keywords: intercultural learning, grounded theory, students, other

Procedia PDF Downloads 67
27708 An Investigation of the Effectiveness and Quality Service of Thai Labor Fund

Authors: Chutikarn Sriviboon

Abstract:

The objectives of this research were to study the operation of the Labor Fund and to investigate the needs for money and assistance from Thai laborers both from within the system and out of the system and to compare between the assistance from domestic and international funds. The population of this study included three labor groups: group one was laborer in the system who were the members of saving cooperative, group two was laborer in the system who were not the members of saving cooperative, and group three was laborer who were not in the system. This was a mixed research of quantitative and qualitative methods. The findings can be categorized into four parts. First, the labor fund was beneficial to Thai laborers by giving access to government funds but the weakness was found to be poor public relations. Second, the labor funds should extend their assistance to laborer in the system who was not the members of saving cooperative. Third, the comparison between domestic labor funds and international labor funds revealed that there were no international funds which provided assistance the same way as Thai labor funds. Finally, there was a need to improve the management of labor funds and to provide long term assistance to Thai labors.

Keywords: effectiveness, quality, labor funds, service

Procedia PDF Downloads 356
27707 A Review on the Hydrologic and Hydraulic Performances in Low Impact Development-Best Management Practices Treatment Train

Authors: Fatin Khalida Abdul Khadir, Husna Takaijudin

Abstract:

Bioretention system is one of the alternatives to approach the conventional stormwater management, low impact development (LID) strategy for best management practices (BMPs). Incorporating both filtration and infiltration, initial research on bioretention systems has shown that this practice extensively decreases runoff volumes and peak flows. The LID-BMP treatment train is one of the latest LID-BMPs for stormwater treatments in urbanized watersheds. The treatment train is developed to overcome the drawbacks that arise from conventional LID-BMPs and aims to enhance the performance of the existing practices. In addition, it is also used to improve treatments in both water quality and water quantity controls as well as maintaining the natural hydrology of an area despite the current massive developments. The objective of this paper is to review the effectiveness of the conventional LID-BMPS on hydrologic and hydraulic performances through column studies in different configurations. The previous studies on the applications of LID-BMP treatment train that were developed to overcome the drawbacks of conventional LID-BMPs are reviewed and use as the guidelines for implementing this system in Universiti Teknologi Petronas (UTP) and elsewhere. The reviews on the analysis conducted for hydrologic and hydraulic performances using the artificial neural network (ANN) model are done in order to be utilized in this study. In this study, the role of the LID-BMP treatment train is tested by arranging bioretention cells in series in order to be implemented for controlling floods that occurred currently and in the future when the construction of the new buildings in UTP completed. A summary of the research findings on the performances of the system is provided which includes the proposed modifications on the designs.

Keywords: bioretention system, LID-BMP treatment train, hydrological and hydraulic performance, ANN analysis

Procedia PDF Downloads 118
27706 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
27705 Archive's Accessibility of University Archive: Case Study at Universitas Gadjah Mada Archives

Authors: Berlian Eka Kurnia, Mohamad Very Setiawan, Rahmat Fadhli

Abstract:

Archives play an important role in organization’s continuity, especially related to the learning activities in the past. Archive management is considered accessible when the archive can be used when needed. University archive can support research activities for institutions, besides, archive management services also have to pay attention to the accessibility that became a barometer of how easy users get the data or information from an archive, use and understand it. This study identifies about the accessibility of archive services at the Universitas Gadjah Mada, with case study method. Universitas Gadjah Mada archives not only provide a service to the academicians, but also for public. Universitas Gadjah Mada archive can be traced online and offline. Online searching archives can be acceessed through an application “SIKS” and offline searching can be accessed by "finding aids" printed. Although Universitas Gadjah Mada Archives has its own procedures to access the archive directly, but they also remain guided by National Archive of Indonesia.

Keywords: archival institution, university archive, archive’s accessibility, archive management

Procedia PDF Downloads 321
27704 Managing Organizational Change for a Transformation Project: The Billing and Customer Relationship Management Journey

Authors: Sharifah I. N. A. Syed Azmi, Nazarina Mohd Nasir

Abstract:

The Billing & Customer Relationship Management (BCRM) project is an important enabler towards realizing customer experience transformation. It involves technological shifts for future scalability, revision of multiple business processes and adoption of change by the users and impacted employees. This massive transition, if not managed properly, may result in the decline of business performance due to productivity drop. Organizational change management is an essential element in BCRM project implementation to ensure the system is well understood and embraced by all stakeholders. In order to move impacted employees from unaware state or denial mode to full-acceptance mindset and committing themselves in using the new system, their involvement in the whole change process starting from the initial stage is imperative. Through the BCRM Change Management Plan, a holistic approach was taken whereby the strategy and program for five key components namely executive sponsorship, continuous communication, process change readiness, organizational readiness and individual readiness were all carefully established. Roles of the project sponsor, change agents, change ambassadors and community of practice (CoP) were clearly defined in gaining high commitment and support across the entire organization. Continuous communication and engagement initiatives throughout project implementation have been carried out to reach all stakeholders. The business readiness was constantly monitored and assessed including effectiveness of end-user training, thorough review of process documentation and completion of roles realignment exercise.

Keywords: BCRM, change management, organizational change, transformation project

Procedia PDF Downloads 141
27703 ‘Groupitizing’ – A Key Factor in Math Learning Disabilities

Authors: Michal Wolk, Bat-Sheva Hadad, Orly Rubinsten

Abstract:

Objective: The visuospatial perception system process that allows us to decompose and recompose small quantities into a whole is often called “groupitizing.” Previous studies have been found that adults use groupitizing processes in quantity estimation tasks and link this ability of subgroups recognition to arithmetic proficiency. This pilot study examined if adults with math difficulties benefit from visuospatial grouping cues when asked to estimate the quantity of a given set. It also compared the tipping point in which a significant improvement occurs in adults with typical development compared to adults with math difficulties. Method: In this pilot research, we recruited adults with low arithmetic abilities and matched controls. Participants were asked to estimate the quantity of a given set. Different grouping cues were displayed (space, color, or none) with different visual configurations (different quantities-different shapes, same quantities- different shapes, same quantities- same shapes). Results: Both groups showed significant performance improvement when grouping cues appeared. However, adults with low arithmetic abilities benefited from the grouping cues already in very small quantities as four. Conclusion: impaired perceptual groupitizing abilities may be a characteristic of low arithmetic abilities.

Keywords: groupitizing, math learning disability, quantity estimation, visual perception system

Procedia PDF Downloads 204
27702 Are Some Languages Harder to Learn and Teach Than Others?

Authors: David S. Rosenstein

Abstract:

The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.

Keywords: learning different languages, language learning difficulties, faulty language expectations

Procedia PDF Downloads 533