Search results for: statistical machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7120

Search results for: statistical machine translation

5260 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends

Authors: Dena Alhaloul

Abstract:

The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.

Keywords: fertility, distribution, modeling, regression

Procedia PDF Downloads 81
5259 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity

Procedia PDF Downloads 129
5258 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System

Authors: Larry Audet

Abstract:

Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.

Keywords: creativity, leadership, KEYS survey, teaching, work climate

Procedia PDF Downloads 166
5257 Monitoring a Membrane Structure Using Non-Destructive Testing

Authors: Gokhan Kilic, Pelin Celik

Abstract:

Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.

Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring

Procedia PDF Downloads 92
5256 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility

Authors: Etienne Provencal, David L. St-Pierre

Abstract:

A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.

Keywords: EGM, linear regression, model prediction, slot operations

Procedia PDF Downloads 255
5255 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
5254 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 19
5253 Design of Demand Pacemaker Using an Embedded Controller

Authors: C. Bala Prashanth Reddy, B. Abhinay, C. Sreekar, D. V. Shobhana Priscilla

Abstract:

The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope.

Keywords: missing R wave, PWM, demand pacemaker, heart

Procedia PDF Downloads 482
5252 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 68
5251 Role of DatScan in the Diagnosis of Parkinson's Disease

Authors: Shraddha Gopal, Jayam Lazarus

Abstract:

Aims: To study the referral practice and impact of DAT-scan in the diagnosis or exclusion of Parkinson’s disease. Settings and Designs: A retrospective study Materials and methods: A retrospective study of the results of 60 patients who were referred for a DAT scan over a period of 2 years from the Department of Neurology at Northern Lincolnshire and Goole NHS trust. The reason for DAT scan referral was noted under 5 categories against Parkinson’s disease; drug-induced Parkinson’s, essential tremors, diagnostic dilemma, not responding to Parkinson’s treatment, and others. We assessed the number of patients who were diagnosed with Parkinson’s disease against the number of patients in whom Parkinson’s disease was excluded or an alternative diagnosis was made. Statistical methods: Microsoft Excel was used for data collection and statistical analysis, Results: 30 of the 60 scans were performed to confirm the diagnosis of early Parkinson’s disease, 13 were done to differentiate essential tremors from Parkinsonism, 6 were performed to exclude drug-induced Parkinsonism, 5 were done to look for alternative diagnosis as the patients were not responding to anti-Parkinson medication and 6 indications were outside the recommended guidelines. 55% of cases were confirmed with a diagnosis of Parkinson’s disease. 43.33% had Parkinson’s disease excluded. 33 of the 60 scans showed bilateral abnormalities and confirmed the clinical diagnosis of Parkinson’s disease. Conclusion: DAT scan provides valuable information in confirming Parkinson’s disease in 55% of patients along with excluding the diagnosis in 43.33% of patients aiding an alternative diagnosis.

Keywords: DATSCAN, Parkinson's disease, diagnosis, essential tremors

Procedia PDF Downloads 232
5250 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 301
5249 A Framework of Virtualized Software Controller for Smart Manufacturing

Authors: Pin Xiu Chen, Shang Liang Chen

Abstract:

A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.

Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing

Procedia PDF Downloads 82
5248 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
5247 Strategies for the Oral Delivery of Oligonucleotides

Authors: Venkat Garigapati

Abstract:

To date, more than a dozen oligonucleotide products are approved as injectable products for clinical use. However, there is no single oligo nucleotide product approved for clinical use. Oral delivery of oligo nucleotides is patient friendly administration however, many challenges involved in the development of oral formulation. Over the course of last twenty plus years, the research in this space aimed to address these challenges. This paper describes the issues involved in solubility, stability, enzymatic (nuclease) induced degradation, and permeation of nucleotides in the Gastrointestinal (GI) and how to overcome these challenges. Also, the translation of in vitro data to in vivo models hinders the formulation development. This paper describes the challenges involved in the development of Oligo Nucleotide products for oral administration. It also discusses the chemistry and formulation strategies for oral administration of oligonucleotides.

Keywords: oral adminstration, oligo nucleotides, stability, permeation, gastrointestinal tract

Procedia PDF Downloads 85
5246 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 413
5245 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
5244 Comparision of Statistical Variables for Vaccinated and Unvaccinated Children in Measles Cases in Khyber Pukhtun Khwa

Authors: Inayatullah Khan, Afzal Khan, Hamzullah Khan, Afzal Khan

Abstract:

Objectives: The objective of this study was to compare different statistical variables for vaccinated and unvaccinated children in measles cases. Material and Methods: This cross sectional comparative study was conducted at Isolation ward, Department of Paediatrics, Lady Reading Hospital (LRH), Peshawar, from April 2012 to March 2013. A total of 566 admitted cases of measles were enrolled. Data regarding age, sex, address, vaccination status, measles contact, hospital stay and outcome was collected and recorded on a proforma. History of measles vaccination was ascertained either by checking the vaccination cards or on parental recall. Result: In 566 cases of measles, 211(39%) were vaccinated and 345 (61%) were unvaccinated. Three hundred and ten (54.80%) patients were males and 256 (45.20%) were females with a male to female ratio of 1.2:1.The age range was from 1 year to 14 years with mean age with SD of 3.2 +2 years. Majority (371, 65.5%) of the patients were 1-3 years old. Mean hospital stay was 3.08 days with a range of 1-10 days and a standard deviation of ± 1.15. History of measles contact was present in 393 (69.4%) cases. Fourty eight patients were expired with a mortality rate of 8.5%. Conclusion: Majority of the children in Khyber Pukhtunkhwa are unvaccinated and unprotected against measles. Among vaccinated children, 39% of children attracted measles which indicate measles vaccine failure. This figure is clearly higher than that accepted for measles vaccine (2-10%).

Keywords: measles, vaccination, immunity, population

Procedia PDF Downloads 444
5243 A Comparative Study of Milton’s Paradise Lost and the Quran in Islam

Authors: Najmeh Dehghanitafti

Abstract:

Paradise Lost, John Milton's epic poem of theology and cosmology, gained substantial critical attention in the twentieth century. Milton's illustration of Satan and Eve and his allusions to the Bible can be an interesting source of criticism for the scholars who try to analyze Milton's works in terms of religious studies. Therefore, various studies of Paradise Lost try to investigate this epic in terms of religions beyond Christianity. Paradise Lost's comparison with religious books such as the Qur’an in Islam in terms of character illustration created multiple translations of this epic into Arabic. Accordingly, this paper aims to compare Miltonic Satan versus Quranic Iblis based on Inani’s translation of Paradise Lost into Arabic. This study also tries to investigate Miltonic and Quranic view of Eve to find out the similarities and differences between Christianity and Islam in terms of feminism.

Keywords: Eve, feminism, Iblis, Paradise Lost, Satan, The Quran

Procedia PDF Downloads 259
5242 Transformation of Health Communication Literacy in Information Technology during Pandemic in 2019-2022

Authors: K. Y. S. Putri, Heri Fathurahman, Yuki Surisita, Widi Sagita, Kiki Dwi Arviani

Abstract:

Society needs the assistance of academics in understanding and being skilled in health communication literacy. Information technology runs very fast while health communication literacy skills in getting health communication information during the pandemic are not as fast as the development of information technology. The research question is whether there is an influence of health communication on information technology in health information during the pandemic in Indonesia. The purpose of the study is to find out the influence of health communication on information technology in health information during the pandemic in Indonesia. The concepts of health communication literacy and information technology are used this study. Previous research is in support of this study. Quantitative research methods by disseminating questionnaires in this study. The validity and reliability test of this study is positive, so it can proceed to the next statistical analysis. Descriptive results of variable health communication literacy are of positive value in all dimensions. All dimensions of information technology are of positive value. Statistical tests of the influence of health communication literacy on information technology are of great value. Discussion of both variables in the influence of health communication literacy and high-value information technology because health communication literacy has a high effect in information technology. Respondents to this study have high information technology skills. So that health communication literacy in obtaining health information during the 2019-2022 pandemic is needed. Research advice is that academics are still very much needed by the community in the development of society during the pandemic.

Keywords: health information, health information needs, literacy health communication, information technology

Procedia PDF Downloads 140
5241 An Analysis of the Relationship between Consumer Perception and Purchase Behavior towards Green Fashion in India

Authors: Upasna Bhandari, Indranil Saha, Deepak John Mathew

Abstract:

The green fashion market is growing rapidly as eco-friendly consumers are willing to expand their organic lifestyle to include clothing. With an increasing share of fashion consumers globally, Indian consumers are observed to consider the social and environmental ethics while making purchasing decisions. While some research clearly identifies the efforts of responsible consumers towards green fashion, some argue that fashion-orientated consumers who are sensitive towards environment do not actively participate towards supporting green fashion. This study aims to analyze the current perception of green fashion among Indian consumers. A small-scale exploratory study is conducted where consumers’ perception of green fashion is examined followed by an analysis of translation of this perception into purchase decision making. This research paper gives insight into consumer awareness on green fashion and provides scope towards the expansion of ethical fashion consumption within the demography of India.

Keywords: consumer perception, environmental attitudes, fashion retailing, green fashion, sustainability

Procedia PDF Downloads 440
5240 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
5239 A Multilingual App for Studying Children’s Developing Values: Developing a New Arabic Translation of the Picture-based Values Survey and Comparison of Palestinian and Jewish Children in Israel

Authors: Aysheh Maslamani, Ella Daniel, Anna Dӧring, Iyas Nasser, Ariel Knafo-Noam

Abstract:

Over 250 million people globally speak Arabic, one of the most widespread languages in the world, as their first language. Yet only a minuscule fraction of developmental research studies Middle East children. As values are a core component of culture, understanding how values develop is key to understanding development across cultures. Indeed, with the advent of research on value development, significantly since the introduction of the Picture-Based Value Survey for Children, interest in cross-cultural differences in children's values is increasing. As no measure exists for Arab children, PBVS-C in Arabic developed. The online application version of the PBVS-C that can be administered on a computer, tablet, or even a smartphone to measure the 10 values whose presence has been repeatedly demonstrated across the world. The application has been developed simultaneously in Hebrew and Arabic and can easily be adapted to include additional languages. In this research, the development of the multilingual PBVS-C application version adapted for five-year-olds. The translation process discussed (including important decisions such as which dialect of Arabic, a diglossic language, is most suitable), adaptations to subgroups (e.g., Muslim, Druze and Christian Arab children), and using recorded instructions and value item captions, as well as touchscreens to enhance applicability with young children. Four hundred Palestinian and Israeli 5-12 year old children reported their values using the app (50% in Arabic, 50% in Hebrew). Confirmatory Multidimensional Scaling (MDS) analyses revealed structural patterns that closely correspond to Schwartz's theoretical structure in both languages (e.g., universalism values correlated positively with benevolence and negatively with power, whereas tradition correlated negatively with hedonism and positively with conformity). Replicating past findings, power values showed lower importance than benevolence values in both cultural groups, and there were gender differences in which girls were higher in self-transcendence values and lower in self-enhancement values than boys. Cultural value importance differences were explored and revealed that Palestinian children are significantly higher in tradition and achievement values compared to Israeli children, whereas Israeli children are significantly higher in benevolence, hedonism, self-direction, and stimulation values. Age differences in value coherence across the two groups were also studied. Exploring the cultural differences opens a window to understanding the basic motivations driving populations that were hardly studied before. This study will contribute to the developmental value research since it considers the role of critical variables such as culture and religion and tests value coherence across middle childhood. Findings will be discussed, and the potential and limitations of the computerized PBVS-C concerning future values research.

Keywords: Arab-children, culture, multilingual-application, value-development

Procedia PDF Downloads 116
5238 Examining the Attitudes of Pre-School Teachers towards Values Education in Terms of Gender, School Type, Professional Seniority and Location

Authors: Hatice Karakoyun, Mustafa Akdag

Abstract:

This study has been made to examine the attitudes of pre-school teachers towards values education. The study has been made as a general scanning model. The study’s working group contains 108 pre-school teachers who worked in Diyarbakır, Turkey. In this study Values Education Attitude Scale (VEAS), which developed by Yaşaroğlu (2014), was used. In order to analyze the data for sociodemographic structure, percentage and frequency values were examined. The Kolmogorov-Smirnov method was used in determination of the normal distribution of data. During analyzing the data, KolmogorovSimirnov test and the normal curved histograms were examined to determine which statistical analyzes would be applied on the scale and it was found that the distribution was not normal. Thus, the Mann Whitney U analysis technique which is one of the nonparametric statistical analysis techniques were used to test the difference of the scores obtained from the scale in terms of independent variables. According to the analyses, it seems that pre-school teachers’ attitudes toward values education are positive. According to the scale with the highest average, it points out that pre-school teachers think that values education is very important for students’ and children’s future. The variables included in the scale (gender, seniority, age group, education, school type, school place) seem to have no effect on the pre-school teachers’ attitude grades which joined to the study.

Keywords: attitude scale, pedagogy, pre-school teacher, values education

Procedia PDF Downloads 248
5237 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: injection moulding, tensile strength, poly-propylene, Taguchi

Procedia PDF Downloads 288
5236 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion

Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab

Abstract:

Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.

Keywords: air jet loom, twist per inch, twist loss, weft yarn

Procedia PDF Downloads 403
5235 Study of the Protection of Induction Motors

Authors: Bencheikh Abdellah

Abstract:

In this paper, we present a mathematical model dedicated to the simulation breaks bars in a three-phase cage induction motor. This model is based on a mesh circuit representing the rotor cage. The tested simulation allowed us to demonstrate the effectiveness of this model to describe the behavior of the machine in a healthy state, failure.

Keywords: AC motors, squirrel cage, diagnostics, MATLAB, SIMULINK

Procedia PDF Downloads 438
5234 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
5233 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
5232 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80
5231 Blue Eyes and Blonde Hair in Mass Media: A News Discourse Analysis of Western Media on the News Coverage of Ukraine

Authors: Zahra Mehrabbeygi

Abstract:

This research is opted to analyze and survey discourse variety and news image-making in western media regarding the news coverage of the Russian army intrusion into Ukraine. This research will be done on the news coverage of Ukraine in a period from February 2022 to May 2022 in five western media, "BBC, CBS, NBC, Al Jazeera, and Telegraph." This research attempts to discover some facts about the news policies of the five western news agencies during the circumstances of the Ukraine-Russia war. Critical theories in the news, such as Framing, Media Imperialism of News, Image Making, Discourse, and Ideology, were applied to achieve this goal. The research methodology uses Van Dijk's discourse exploration method based on discourse analysis. The research's statistical population is related to all the news about racial discrimination during the mentioned period. After a statistical population survey with Targeted Sampling, the researcher randomly selected ten news cases for exploration. The research findings show that the western media have similarities in their texts via lexical items, polarization, citations, persons, and institutions. The research findings also imply pre-suppositions, connotations, and components of consensus agreement and underlying predicates in the outset, middle, and end events. The reaction of some western media not only shows their bewilderment but also exposes their prejudices rooted in racism.

Keywords: news discourse analysis, western media, racial discrimination, Ukraine-Russia war

Procedia PDF Downloads 97