Search results for: learning of sciences
6128 The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools
Authors: Mohammed Hassan Alshaikhi
Abstract:
Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group.Keywords: English language, learning vocabulary, Saudi teachers, semantic mapping, teaching vocabulary strategies
Procedia PDF Downloads 2476127 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 626126 Using Happening Performance in Vocabulary Teaching
Authors: Mustafa Gultekin
Abstract:
It is believed that drama can be used in language classes to create a positive atmosphere for students to use the target language in an interactive way. Thus, drama has been extensively used in many settings in language classes. Although happening has been generally used as a performance art of theatre, this new kind of performance has not been widely known in language teaching area. Therefore, it can be an innovative idea to use happening in language classes, and thus a positive environment can be created for students to use the language in an interactive way. Happening can be defined as an art performance that puts emphasis on interaction in an audience. Because of its interactive feature, happening can also be used in language classes to motivate students to use the language in an interactive environment. The present study aims to explain how a happening performance can be applied to a learning environment to teach vocabulary in English. In line with this purpose, a learning environment was designed for a vocabulary presentation lesson. At the end of the performance, students were asked to compare the traditional way of teaching and happening performance in terms of effectiveness. It was found that happening performance provided the students with a more creative and interactive environment to use the language. Therefore, happening can be used in language classrooms as an innovative tool for education.Keywords: English, happening, language learning, vocabulary teaching
Procedia PDF Downloads 3676125 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2246124 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 736123 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam
Authors: Nhung T. Bui
Abstract:
Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.Keywords: English as a foreign language, higher education, learner autonomy, Vietnam
Procedia PDF Downloads 2676122 Teachers' Emphatic Concern for Their Learners
Authors: Prakash Singh
Abstract:
The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills
Procedia PDF Downloads 4366121 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1776120 Factors Affecting Expectations and Intentions of University Students in Educational Context
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: learning technology, instructional technology, mobile learning, technology
Procedia PDF Downloads 4526119 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF
Authors: Duangkamol Thitivesa
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.Keywords: Thailand quality framework, project Work, writing skill, summative
Procedia PDF Downloads 1506118 The Role of Learning in Stimulation Policies to Increase Participation in Lifelong Development: A Government Policy Analysis
Authors: Björn de Kruijf, Arjen Edzes, Sietske Waslander
Abstract:
In an ever-quickly changing society, lifelong development is seen as a solution to labor market problems by politicians and policymakers. In this paper, we investigate how policy instruments are used to increase participation in lifelong development and on which behavioral principles policy is based. Digitization, automation, and an aging population change society and the labor market accordingly. Skills that were once most sought after in the workforce can become abundantly present. For people to remain relevant in the working population, they need to continue adapting new skills useful in the current labor market. Many reports have been written that focus on the role of lifelong development in this changing society and how lifelong development can help keep people adapt and stay relevant. Inspired by these reports, governments have implemented a broad range of policies to support participation in lifelong development. The question we ask ourselves is how government policies promote participation in lifelong development. This stems from a complex interplay of policy instruments and learning. Regulation, economic and soft instruments can be combined to promote lifelong development, and different types of education further complex policies on lifelong development. Literature suggests that different stages in people’s lives might warrant different methods of learning. Governments could anticipate this in their policies. In order to influence people’s behavior, the government can tap into a broad range of sociological, psychological, and (behavioral) economic principles. The traditional economic assumption that behavior is rational is known to be only partially true, and the government can use many biases in human behavior to stimulate participation in lifelong development. In this paper, we also try to find which biases the government taps into to promote participation if they tap into any of these biases. The goal of this paper is to analyze government policies intended to promote participation in lifelong development. To do this, we develop a framework to analyze the policies on lifelong development. We specifically incorporate the role of learning and the behavioral principles underlying policy instruments in the framework. We apply this framework to the case of the Netherlands, where we examine a set of policy documents. We single out the policies the government has put in place and how they are vertically and horizontally related. Afterward, we apply the framework and classify the individual policies by policy instrument and by type of learning. We find that the Dutch government focuses on formal and non-formal learning in their policy instruments. However, the literature suggests that learning at a later age is mainly done in an informal manner through experiences.Keywords: learning, lifelong development, policy analysis, policy instruments
Procedia PDF Downloads 836117 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 1276116 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning
Authors: Hong Zhang
Abstract:
The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning
Procedia PDF Downloads 1446115 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 1136114 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality
Authors: David Sinfield, Thomas Cochrane, Marcos Steagall
Abstract:
While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications
Procedia PDF Downloads 2386113 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 696112 Education, Learning and Management: Empowering Individuals for the Future
Authors: Ngong Eugene Ekia
Abstract:
Education is the foundation for the success of any society as its impact transcends across all sectors, including economics, politics, and social welfare. It is through education that individuals acquire the necessary knowledge and skills to succeed in life and contribute meaningfully to society. However, the world is changing rapidly, and it is vital for education systems to adapt to these changes to remain relevant. In this paper, we will discuss the current trends and challenges in education and management and propose solutions that can enable individuals to thrive in an ever-evolving world.Keywords: access to education, effective teaching and learning, strong management practices, and empowering and personal development
Procedia PDF Downloads 1426111 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1876110 Creation and Management of Knowledge for Organization Sustainability and Learning
Authors: Deepa Kapoor, Rajshree Singh
Abstract:
This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.Keywords: knowledge creation, knowledge management, organizational development, organization learning
Procedia PDF Downloads 3456109 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 806108 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 2526107 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation
Procedia PDF Downloads 3766106 Proposal for a Mobile Application with Augmented Reality to Improve School Interest
Authors: Mamani Acurio Alex, Aguilar Alonso Igor
Abstract:
The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.Keywords: augmented reality, Vuforia, school interest, learning
Procedia PDF Downloads 886105 Introducing the Concept of Sustainable Learning: Redesigning the Social Studies and Citizenship Education Curriculum in the Context of Saudi Arabia
Authors: Aiydh Aljeddani, Fran Martin
Abstract:
Sustainable human development is an essential component of a sustainable economic, social and environmental development. Addressing sustainable learning only through the addition of new teaching methods, or embedding certain approaches, is not sufficient on its own to support the goals of sustainable human development. This research project seeks to explore how the process of redesigning the current principles of curriculum based on the concept of sustainable learning could contribute to preparing a citizen who could later contribute towards sustainable human development. Multiple qualitative methodologies were employed in order to achieve the aim of this study. The main research methods were teachers’ field notes, artefacts, informal interviews (unstructured interview), a passive participant observation, a mini nominal group technique (NGT), a weekly diary, and weekly meeting. The study revealed that the integration of a curriculum for sustainable development, in addition to the use of innovative teaching approaches, highly valued by students and teachers in social studies’ sessions. This was due to the fact that it created a positive atmosphere for interaction and aroused both teachers and students’ interest. The content of the new curriculum also contributed to increasing students’ sense of shared responsibility through involving them in thinking about solutions for some global issues. This was carried out through addressing these issues through the concept of sustainable development and the theory of Thinking Activity in a Social Context (TASC). Students had interacted with sustainable development sessions intellectually and they also practically applied it through designing projects and cut-outs. Ongoing meetings and workshops to develop work between both the researcher and the teachers, and by the teachers themselves, played a vital role in implementing the new curriculum. The participation of teachers in the development of the project through working papers, exchanging experiences and introducing amendments to the students' environment was also critical in the process of implementing the new curriculum. Finally, the concept of sustainable learning can contribute to the learning outcomes much better than the current curriculum and it can better develop the learning objectives in educational institutions.Keywords: redesigning, social studies and citizenship education curriculum, sustainable learning, thinking activity in a social context
Procedia PDF Downloads 2326104 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1426103 The Development of Chinese-English Homophonic Word Pairs Databases for English Teaching and Learning
Authors: Yuh-Jen Wu, Chun-Min Lin
Abstract:
Homophonic words are common in Mandarin Chinese which belongs to the tonal language family. Using homophonic cues to study foreign languages is one of the learning techniques of mnemonics that can aid the retention and retrieval of information in the human memory. When learning difficult foreign words, some learners transpose them with words in a language they are familiar with to build an association and strengthen working memory. These phonological clues are beneficial means for novice language learners. In the classroom, if mnemonic skills are used at the appropriate time in the instructional sequence, it may achieve their maximum effectiveness. For Chinese-speaking students, proper use of Chinese-English homophonic word pairs may help them learn difficult vocabulary. In this study, a database program is developed by employing Visual Basic. The database contains two corpora, one with Chinese lexical items and the other with English ones. The Chinese corpus contains 59,053 Chinese words that were collected by a web crawler. The pronunciations of this group of words are compared with words in an English corpus based on WordNet, a lexical database for the English language. Words in both databases with similar pronunciation chunks and batches are detected. A total of approximately 1,000 Chinese lexical items are located in the preliminary comparison. These homophonic word pairs can serve as a valuable tool to assist Chinese-speaking students in learning and memorizing new English vocabulary.Keywords: Chinese, corpus, English, homophonic words, vocabulary
Procedia PDF Downloads 1836102 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills
Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li
Abstract:
Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.Keywords: nanotechnology, science education, project-based learning, information and communication technology
Procedia PDF Downloads 3756101 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 286100 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality
Authors: Robert Jesiolowski, Monique Jesiolowski
Abstract:
Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.Keywords: higher education, innovation, virtual reality, game-based learning, loci method
Procedia PDF Downloads 956099 Lived Experiences of Physical Education Teachers in the New Normal: A Consensual Qualitative Research
Authors: Karl Eddie T. Malabanan
Abstract:
Due to the quick transmission and public health risk of coronavirus disease, schools and universities have shifted to distant learning. Teachers everywhere were forced to shift gears instantly in order to react to the needs of students and families using synchronous and asynchronous virtual teaching. This study aims to explore the lived experiences of physical education teachers who are currently experiencing remote learning in teaching during the time of the COVID-19 pandemic. Specifically, the challenges that the physical education teachers encounter during remote learning and teaching. The participants include 12 physical education teachers who have taught in higher education institutions for at least five years. The researcher utilized qualitative research; specifically, the researcher used Consensual Qualitative Research (CQR). The results of this study showed that there are five categories for the Lived Experiences of Physical Education Teachers with thirty-one subcategories. This study revealed that physical education teachers experienced very challenging situations during the time of the pandemic. It also found that students had challenges in the abrupt transition from traditional to virtual learning classes, but it also showed that students are tenacious and willing to face any adversity. The researcher also finds that teachers are mentally drained during this time. Furthermore, one of the main focuses for the teachers should be on improving their well-being. And lastly, to cope with the challenges, teachers employ socializing to relieve tension and anxiety.Keywords: lived experiences, consensual qualitative research, pandemic, education
Procedia PDF Downloads 92