Search results for: feature selection feature subset selection feature extraction/transformation
5268 Deployment of a Product Lifecyle Management (PLM) Solution Towards Digital Transformation
Authors: Asmae Chraibi, Rachid Lghoul, Nabil Rhiati
Abstract:
In the era of Industry 4.0, enterprises are increasingly employing digital technologies in order to improve their product development processes. This research focuses on the strategic deployment of Product Lifecycle Management (PLM) solutions during production as a key tracker of traceability and digital transformation activities. The study explores the integration of PLM within a larger organizational framework, examining its impact on product lifecycle efficiency, corporation, and innovation. Through a comprehensive analysis of a real case study from the automotive industry, this project evaluates the critical success factors and challenges associated with implementing PLM solutions for digital transformation. Moreover, it explores the synergic relationship between PLM and emerging technologies such as 3D experience and SOLIDWORKS, elucidating their combined potential in optimizing production workflows and enabling data-driven decision-making. The study's findings provide global approaches for firms looking to embark on a digital transformation journey by implementing PLM technologies. This research contributes to a better understanding of how PLM can be effectively used to foster innovation and competitiveness in the changing landscape of modern industry by shining light on best practices, critical considerations, and potential obstacles.Keywords: product lifecyle management (PLM), industry 4.0, traceability, digital transformation, solution, innovation, 3D experience, SOLIDWORKS
Procedia PDF Downloads 735267 A Nucleic Acid Extraction Method for High-Viscosity Floricultural Samples
Authors: Harunori Kawabe, Hideyuki Aoshima, Koji Murakami, Minoru Kawakami, Yuka Nakano, David D. Ordinario, C. W. Crawford, Iri Sato-Baran
Abstract:
With the recent advances in gene editing technologies allowing the rewriting of genetic sequences, additional market growth in the global floriculture market beyond previous trends is anticipated through increasingly sophisticated plant breeding techniques. As a prerequisite for gene editing, the gene sequence of the target plant must first be identified. This necessitates the genetic analysis of plants with unknown gene sequences, the extraction of RNA, and comprehensive expression analysis. Consequently, a technology capable of consistently and effectively extracting high-purity DNA and RNA from plants is of paramount importance. Although model plants, such as Arabidopsis and tobacco, have established methods for DNA and RNA extraction, floricultural species such as roses present unique challenges. Different techniques to extract DNA and RNA from various floricultural species were investigated. Upon sampling and grinding the petals of several floricultural species, it was observed that nucleic acid extraction from the ground petal solutions of low viscosity was straightforward; solutions of high viscosity presented a significant challenge. It is postulated that the presence of substantial quantities of polysaccharides and polyphenols in the plant tissue was responsible for the inhibition of nucleic acid extraction. Consequently, attempts were made to extract high-purity DNA and RNA by improving the CTAB method and combining it with commercially available nucleic acid extraction kits. The quality of the total extracted DNA and RNA was evaluated using standard methods. Finally, the effectiveness of the extraction method was assessed by determining whether it was possible to create a library that could be applied as a suitable template for a next-generation sequencer. In conclusion, a method was developed for consistent and accurate nucleic acid extraction from high-viscosity floricultural samples. These results demonstrate improved techniques for DNA and RNA extraction from flowers, help facilitate gene editing of floricultural species and expand the boundaries of research and commercial opportunities.Keywords: floriculture, gene editing, next-generation sequencing, nucleic acid extraction
Procedia PDF Downloads 305266 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos
Authors: Dhanuja S. Patil, Sanjay B. Waykar
Abstract:
Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.Keywords: summarization, detection, Bayesian network, t-cherry tree
Procedia PDF Downloads 3275265 Research on Autonomous Controllability of BeiDou Navigation Satellite System Based on Knowledge Transformation
Authors: Hang Ju, Changmin Zhu
Abstract:
The development level of the BeiDou Navigation Satellite System (BDS) can strongly reflect national defense strength as an important spatial information infrastructure. BDS can be not only used for military purposes, such as intelligence gathering, nuclear explosion monitoring, emergency communications, but also for location services, transportation, mapping, precision agriculture. In order to ensure the national defense security and the wide application of BDS in civil and military areas, BDS must be autonomous and controllable. As a complex system of knowledge-intensive, knowledge transformation runs through the whole process of research and development, production, operation, and maintenance of BDS. Based on the perspective of knowledge transformation, this paper expounds on the meaning of socialization, externalization, combination, and internalization of knowledge transformation, and the coupling relationship of autonomy and control on the basis of analyzing the status quo and problems of the autonomy and control of BDS. The autonomous and controllable framework of BDS based on knowledge transformation is constructed from six dimensions of management capability, R&D capability, technical capability, manufacturing capability, service support capability, and application capability. It can provide support for the smooth implementation of information security policy, provide a reference for the autonomy and control of the upstream and downstream industrial chains in Beidou, and provide a reference for the autonomous and controllable research of aerospace components, military measurement test equipment, and other related industries.Keywords: knowledge transformation, BeiDou Navigation Satellite System, autonomy and control, framework
Procedia PDF Downloads 1865264 Quantum Dynamics for General Time-Dependent Three Coupled Oscillators
Authors: Salah Menouar, Sara Hassoul
Abstract:
The dynamic of time-dependent three coupled oscillators is studied through an approach based on decoupling of them using the unitary transformation method. From a first unitary transformation, the Hamiltonian of the complicated original system is transformed to an equal but a simple one associated with the three coupled oscillators of which masses are unity. Finally, we diagonalize the matrix representation of the transformed hamiltonian by using a unitary matrix. The diagonalized Hamiltonian is just the same as the Hamiltonian of three simple oscillators. Through these procedures, the coupled oscillatory subsystems are completely decoupled. From this uncouplement, we can develop complete dynamics of the whole system in an easy way by just examining each oscillator independently. Such a development of the mechanical theory can be done regardless of the complication of the parameters' variations.Keywords: schrödinger equation, hamiltonian, time-dependent three coupled oscillators, unitary transformation
Procedia PDF Downloads 1005263 Analysing Modern City Heritage through Modernization Transformation: A Case of Wuhan, China
Authors: Ziwei Guo, Liangping Hong, Zhiguo Ye
Abstract:
The exogenous modernization process in China and other late-coming countries, is not resulted from a gradual growth of their own modernity features, but a conscious response to external challenges. Under this context, it had been equally important for Chinese cities to make themselves ‘Chinese’ as well as ‘modern’. Wuhan was the first opened inland treaty port in late Qing Dynasty. In the following one hundred years, Wuhan transferred from a feudal town to a modern industrial city. It is a good example to illustrate the urban construction and cultural heritage through the process and impact of social transformation. An overall perspective on transformation will contribute to develop the city`s uniqueness and enhance its inclusive development. The study chooses the history of Wuhan from 1861 to 1957 as the study period. The whole transformation process will be divided into four typical periods based on key historical events, and the paper analyzes the changes on urban structure and constructions activities in each period. Then, a lot of examples are used to compare the features of Wuhan modern city heritage in the four periods. In this way, three characteristics of Wuhan modern city heritage are summarized. The paper finds that globalization and localization worked together to shape the urban physical space environment. For Wuhan, social transformation has a profound and comprehensive impact on urban construction, which can be analyzed in the aspects of main construction, architecture style, location and actors. Moreover, the three towns of Wuhan have a disparate cityscape that is reflected by the varied heritages and architecture features over different transformation periods. Lastly, the protection regulations and conservation planning of heritage in Wuhan are discussed, and suggestions about the conservation of Wuhan modern heritage are tried to be drawn. The implications of the study are providing a new perspective on modern city heritage for cities like Wuhan, and the future local planning system and heritage conservation policies can take into consideration the ‘Modern Cultural Transformation Route’ in this paper.Keywords: modern city heritage, transformation, identity, Wuhan
Procedia PDF Downloads 1325262 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 1745261 Predictive Modeling of Bridge Conditions Using Random Forest
Authors: Miral Selim, May Haggag, Ibrahim Abotaleb
Abstract:
The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.Keywords: data analysis, random forest, predictive modeling, bridge management
Procedia PDF Downloads 245260 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 1175259 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals
Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze
Abstract:
Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.Keywords: extraction, green technologies, natural resources, flavonoids
Procedia PDF Downloads 1315258 Virtue, Truth, Freedom, And The History Of Philosophy
Authors: Ashley DelCorno
Abstract:
GEM Anscombe’s 1958 essay Modern Moral Philosophy and the tradition of virtue ethics that followed has given rise to the restoration (or, more plainly, the resurrection) of Aristotle as something of an authority figure. Alisdair MacIntyre and Martha Nussbaum are proponents, for example, not just of Aristotle’s relevancy but also of his apparent implicit authority. That said, it’s not clear that the schema imagined by virtue ethicists accurately describes moral life or that it does not inadvertently work to impoverish genuine decision-making. If the label ‘virtue’ is categorically denied to some groups (while arbitrarily afforded to others), it can only turn on itself, thus rendering ridiculous its own premise. Likewise, as an inescapable feature of virtue ethics, Aristotelean binaries like ‘virtue/vice’ and ‘voluntary/involuntary’ offer up false dichotomies that may seriously compromise an agent’s ability to conceptualize choices that are truly free and rooted in meaningful criteria. Here, this topic is analyzed through a feminist lens predicated on the known paradoxes of patriarchy. The work of feminist theorists Jacqui Alexander, Katharine Angel, Simone de Beauvoir, bell hooks, Audre Lorde, Imani Perry, and Amia Srinivasan serves as important guideposts, and the argument here is built from a key tenet of black feminist thought regarding scarcity and possibility. Above all, it’s clear that though the philosophical tradition of virtue ethics presents itself as recovering the place of agency in ethics, its premises possess crippling limitations toward the achievement of this goal. These include, most notably, virtue ethics’ binding analysis of history, as well as its axiomatic attachment to obligatory clauses, problematic reading-in of Aristotle and arbitrary commitment to predetermined and competitively patriarchal ideas of what counts as a virtue.Keywords: feminist history, the limits of utopic imagination, curatorial creation, truth, virtue, freedom
Procedia PDF Downloads 835257 The Suitability of Agile Practices in Healthcare Industry with Regard to Healthcare Regulations
Authors: Mahmood Alsaadi, Alexei Lisitsa
Abstract:
Nowadays, medical devices rely completely on software whether as whole software or as embedded software, therefore, the organization that develops medical device software can benefit from adopting agile practices. Using agile practices in healthcare software development industries would bring benefits such as producing a product of a high-quality with low cost and in short period. However, medical device software development companies faced challenges in adopting agile practices. These due to the gaps that exist between agile practices and the requirements of healthcare regulations such as documentation, traceability, and formality. This research paper will conduct a study to investigate the adoption rate of agile practice in medical device software development, and they will extract and outline the requirements of healthcare regulations such as Food and Drug Administration (FDA), Health Insurance Portability and Accountability Act (HIPAA), and Medical Device Directive (MDD) that affect directly or indirectly on software development life cycle. Moreover, this research paper will evaluate the suitability of using agile practices in healthcare industries by analyzing the most popular agile practices such as eXtream Programming (XP), Scrum, and Feature-Driven Development (FDD) from healthcare industry point of view and in comparison with the requirements of healthcare regulations. Finally, the authors propose an agile mixture model that consists of different practices from different agile methods. As result, the adoption rate of agile practices in healthcare industries still low and agile practices should enhance with regard to requirements of the healthcare regulations in order to be used in healthcare software development organizations. Therefore, the proposed agile mixture model may assist in minimizing the gaps existing between healthcare regulations and agile practices and increase the adoption rate in the healthcare industry. As this research paper part of the ongoing project, an evaluation of agile mixture model will be conducted in the near future.Keywords: adoption of agile, agile gaps, agile mixture model, agile practices, healthcare regulations
Procedia PDF Downloads 2375256 Using Photogrammetric Techniques to Map the Mars Surface
Authors: Ahmed Elaksher, Islam Omar
Abstract:
For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.Keywords: mars, photogrammetry, MOLA, HiRISE
Procedia PDF Downloads 595255 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 2695254 Arabic Literature as a Tool for Educational Transformation in Nigeria
Authors: Abdulfatah A Raji
Abstract:
This paper started with the definitions of literature, Arabic literature, transformation and went further to highlight the components of educational transformation. The general history of Arabic literature was discussed with focus on how it undergoes some transformations from pre-Islamic period through Quranic era, Abbasid literature to renaissance period in which the modernization of Arabic literature started in Egypt. It also traces the spread of Arabic literature in Nigeria from the pre-colonial era during the Kanuri rulers to Jihad of Usman Dan Fodio and the development of literature which manifested to the Teacher’s Colleges and Bayero University in Northern Nigeria. Also, the establishment of primary and post-primary schools by Muslim organizations in many cities and towns of the Western part of Nigeria. Literary criticism was also discussed in line with Arabic literature. Poetry work of eminent poets were cited to show its importance in line with educational transformation in Nigerian literature and lessons from the cited Arabic poetry works were also highlighted to include: motivation to behave well and to tolerate others, better spirits of interaction, love and co-existence among different sexes, religion etc. All these can help in developing a better educational transformation in Nigeria which can in turn help in how to conduct researches for national development. The paper recommended compulsory Arabic literature at all levels of the nations’ educational system as well as publication of Arabic books and journals to encourage peace in this era of conflicts and further transform Nigeria’s educational system for better.Keywords: Arabic, literature, peace, development, Nigeria
Procedia PDF Downloads 4785253 Technology Roadmapping in Defense Industry
Authors: Sevgi Özlem Bulu, Arif Furkan Mendi, Tolga Erol, İzzet Gökhan Özbilgin
Abstract:
The rapid progress of technology in today's competitive conditions has also accelerated companies' technology development activities. As a result, companies are paying more attention to R&D studies and are beginning to allocate a larger share to R&D projects. A more systematic, comprehensive, target-oriented implementation of R&D studies is crucial for the company to achieve successful results. As a consequence, Technology Roadmap (TRM) is gaining importance as a management tool. It has critical prospects for achieving medium and long term success as it contains decisions about past business, future plans, technological infrastructure. When studies on TRM are examined, projects to be placed on the roadmap are selected by many different methods. Generally preferred methods are based on multi-criteria decision making methods. Management of selected projects becomes an important point after the selection phase of the projects. At this stage, TRM are used. TRM can be created in many different ways so that each institution can prepare its own Technology Roadmap according to their strategic plan. Depending on the intended use, there can be TRM with different layers at different sizes. In the evaluation phase of the R&D projects and in the creation of the TRM, HAVELSAN, Turkey's largest defense company in the software field, carries out this process with great care and diligence. At the beginning, suggested R&D projects are evaluated by the Technology Management Board (TMB) of HAVELSAN in accordance with the company's resources, objectives, and targets. These projects are presented to the TMB periodically for evaluation within the framework of certain criteria by board members. After the necessary steps have been passed, the approved projects are added to the time-based TRM, which is composed of four layers as market, product, project and technology. The use of a four-layered roadmap provides a clearer understanding and visualization of company strategy and objectives. This study demonstrates the benefits of using TRM, four-layered Technology Roadmapping and the possibilities for the institutions in the defense industry.Keywords: technology roadmap, research and development project, project selection, research development in defense industry
Procedia PDF Downloads 1805252 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 1445251 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis
Authors: Wenbo Du, Xiaomei Ma
Abstract:
With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression
Procedia PDF Downloads 1465250 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4105249 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids
Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki
Abstract:
Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction
Procedia PDF Downloads 1085248 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 745247 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis
Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan
Abstract:
Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification
Procedia PDF Downloads 1405246 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 915245 Lexical Features and Motivations of Product Reviews on Selected Philippine Online Shops
Authors: Jimmylen Tonio, Ali Anudin, Rochelle Irene G. Lucas
Abstract:
Alongside the progress of electronic-business websites, consumers have become more comfortable with online shopping. It has become customary for consumers that prior to purchasing a product or availing services, they consult online reviews info as bases in evaluating and deciding whether or not they should push thru with their procurement of the product or service. Subsequently, after purchasing, consumers tend to post their own comments of the product in the same e-business websites. Because of this, product reviews (PRS) have become an indispensable feature in online businesses equally beneficial for both business owners and consumers. This study explored the linguistic features and motivations of online product reviews on selected Philippine online shops, LAZADA and SHOPEE. Specifically, it looked into the lexical features of the PRs, the factors that motivated consumers to write the product reviews, and the difference of lexical preferences between male and female when they write the reviews. The findings revealed the following: 1. Formality of words in online product reviews primarily involves non-standard spelling, followed by abbreviated word forms, colloquial contractions and use of coined/novel words; 2. Paralinguistic features in online product reviews are dominated by the use of emoticons, capital letters and punctuations followed by the use of pictures/photos and lastly, by paralinguistic expressions; 3. The factors that motivate consumers to write product reviews varied. Online product reviewers are predominantly driven by venting negative feelings motivation, followed by helping the company, helping other consumers, positive self-enhancement, advice seeking and lastly, by social benefits; and 4. Gender affects the word frequencies of product online reviews, while negation words, personal pronouns, the formality of words, and paralinguistic features utilized by both male and female online product reviewers are not different.Keywords: lexical choices, motivation, online shop, product reviews
Procedia PDF Downloads 1525244 The Influence of Temperature on Apigenin Extraction from Chamomile (Matricaria recutita) by Superheated Water
Authors: J. Švarc-Gajić, A. Cvetanović
Abstract:
Apigenin is a flavone synthetized by many plants and quite abundant in chamomile (Matricaria recutita) in its free form and in the form of its glucoside and different acylated forms. Many beneficial health effects have been attributed to apigenin, such as chemo-preventive, anxiolytic, anti-inflammatory, antioxidant and antispasmodic. It is reported that free apigenin is much more bioactive in comparison to its bound forms. Subcritical water offers numerous advantages in comparison to conventional extraction techniques, such as good selectivity, low price and safety. Superheated water exhibits high hydrolytical potential which must be carefully balanced when using this solvent for the extraction of bioactive molecules. Moderate hydrolytical potential can be exploited to liberate apigenin from its bound forms, thus increasing biological potential of obtained extracts. The polarity of pressurized water and its hydrolytical potential are highly dependent on the temperature. In this research chamomile ligulate flowers were extracted by pressurized hot water in home-made subcritical water extractor in conditions of convective mass transfer. The influence of the extraction temperature was investigated at 30 bars. Extraction yields of total phenols, total flavonoids and apigenin depending on the operational temperature were calculated based on spectrometric assays. Optimal extraction temperature for maximum yields of total phenols and flavonoids showed to be 160°C, whereas apigenin yield was the highest at 120°C.Keywords: superheated water, temperature, chamomile, apigenin
Procedia PDF Downloads 4825243 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions
Authors: Korban Oosthuizen, Robert C. Luckay
Abstract:
Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries
Procedia PDF Downloads 785242 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology
Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian
Abstract:
Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction
Procedia PDF Downloads 3165241 Critical Literacy and Multiliteracies in the English Language Teaching at Federal Institute of Mato Grosso, Rondonópolis Campus
Authors: Jordana Lenhardt
Abstract:
This paperwork aims to promote a reflection on the critical literacy and multiliteracies concepts in the English language teaching, under an emancipatory perspective, in the English language classroom at the Federal Institute of Mato Grosso (IFMT), Rondonópolis Campus. Some Authors place the relationship between the world conscience and the self-conscience in a direct reason, compromising one to the other, and others defend that emancipatory teaching practice must be connected in all the spheres of the social context; with this paperwork, we intend to analyze students’ interactions with the English language, in order to verify if they demonstrate critical conscience about language and the world around them. The study is still at a preliminary level and is grounded in discourse critical analysis and systemic-functional linguistics. We understand that text is irremediable, linked to a context, and that the linguistic selection made by the speaker builds social representations. This research foresees the analysis of some students’ speeches in an interview about their classes at the Federal Institute in the city of Rondonópolis and the methodology being used on them. Discourse critical analysis explains that, through the awareness of the language uses, learners can become more conscious of the coercions in their own language practices, the possibilities of risks, and the costs of the individual or collective challenges, to engage themselves in emancipatory linguistic practice. The critical language conscience contributes, on the other hand, to make students more aware of the practices in which they are involved, as producers and consumers of texts, of the social forces, ideologies, and power relations, their effects on the identities and social relations, as well as the discourse role in the social and cultural processes.Keywords: multiliteracies, critical literacy, emancipation, social transformation
Procedia PDF Downloads 1015240 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 2915239 Beer Brand Commercials and Gender Representation in Nigeria: Contextualization's of Selected Television and YouTube Visuals of the 2010s and 2020s
Authors: Theresa Belema Chris-Biriowu
Abstract:
The change in trends in relation to gender representation in beer brand commercials was the thrust of the study. The study investigated how beer brand commercials reflect societal realities in their portrayals of gender roles within the span of a decade. The major objective of the study was to find out how gender was contextualized in selected beer brand commercials that both air on Nigerian television and stream on YouTube. The study was anchored on the muted group theory. The population of the study was in two streams: the total number of beer beverages that are produced by the eleven breweries in Nigeria and the registered advertising agencies in Lagos, Nigeria. The sample size was also two-pronged: the purposive selection of beer brands that have their commercials on television and YouTube and the purposive selection of an ad agency that has produced running commercials for beer brands within the period between 2010s and 2020s. They adopted visual framing analysis and narrative analysis research techniques. The study qualitatively analyzed the contents of beer brand commercials and conducted an interview with the management of the ad agency for data collection. The data was presented in images and words. The findings showed that females are underrepresented and misrepresented in the beer brand commercials and that the beer brands are not producing commercials that adequately reflect the realities of present times. It was also found that very little has changed in the ad industry between the periods studied, and commercial screenplays are not written with a specific aim to either target the female demographics or give them equal opportunities to thrive in the beer economy. The study concluded that the gender gap in beer commercials subsists and translates to gender discrimination, especially since it is established that females are also stakeholders in the beer economy. The study recommends that beer brands should produce commercials that appeal to their audience irrespective of gender, reflect contemporary realities, and give all genders equal opportunities to thrive in the increasingly competitive industry.Keywords: beer brands, commercials, gender representation, visuals, television, YouTube
Procedia PDF Downloads 39