Search results for: coastal features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4513

Search results for: coastal features

2653 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 142
2652 The Effect of Air Filter Performance on Gas Turbine Operation

Authors: Iyad Al-Attar

Abstract:

Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.

Keywords: filter efficiency, EPA Filters, pressure drop, permeability

Procedia PDF Downloads 239
2651 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 415
2650 Inorganic Anion Removal from Water Using Natural Adsorbents

Authors: A. Ortuzar, I. Escondrillas, F. Mijangos

Abstract:

There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO3 and FeCl3, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO3: FeCl3 mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L-1 As solution. Besides, the 1:1 FeCO3 and FeCl3 mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g-1.

Keywords: drinking water, natural adsorbent materials, removal, selectivity

Procedia PDF Downloads 187
2649 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks

Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof

Abstract:

An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.

Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature

Procedia PDF Downloads 175
2648 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India

Authors: Rabindra K. Panda, Gurjeet Singh

Abstract:

The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.

Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation

Procedia PDF Downloads 306
2647 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 172
2646 Technology Angels and Entrepreneurs: Insights from a Study in Poland

Authors: Rafal Morawczynski

Abstract:

The paper presents results of a study of technology angels in Poland, who are important for the development of the high technology industries. For entrepreneurs, they offer not only capital but also expertise, engagement, and networking. A technology angel is a relatively new type of investor who invests in high-tech start-ups and supports their founders (entrepreneurs) in the development process of a new venture. Conclusions are drawn from a comparison between 8 technology angels and 7 'classical' business angels. Results present features and behaviors of technology angels that distinguish them from traditional (typical, classic) business angels. As this type of investor actively cooperates with entrepreneurs, the study focuses mainly on their perception of venture founders and several aspects of this cooperation: perception of entrepreneurs’ characteristics by angels, correction of expectations toward corporate governance, and 'value adding' activities.

Keywords: business angels, entrepreneurs, Poland, start-up, technology entrepreneurship, venture capital

Procedia PDF Downloads 189
2645 Can Antipsychotics Use for Schizophrenia on Long Term Lower Serum Cortisol Level?

Authors: Rady A., Elsheshai A., Eltawel M.

Abstract:

Introduction and Aim of work: Literature suggest that antipsychotic medications may decrease cortisol level, an effect that seems to be more present with second generation antipsychotic. Our study aims at assessing effect of long term use of antipsychotics on cortisol level Subjects and Methods: 30 chronic schizophrenic patients on antipsychotics compared to 20 drug naive schizophrenic patients as regards serum cortisol level Results: Cortisol level was significantly lower in chronic schizophrenic patients receiving antipsychotics compared to drug naive patients (P=0.002 <0.05) Conclusion: Antipsychotic medications seem to have the potential to decrease cortisol level in blood. Among hypothesis proposed in literature is the good control of pseudo stress due to psychotic features.

Keywords: schizophrenia, antipsychotic, cortisol, HPA

Procedia PDF Downloads 520
2644 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food

Authors: Surbhi Rani, Sunita Gakkhar

Abstract:

The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.

Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations

Procedia PDF Downloads 109
2643 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition

Procedia PDF Downloads 157
2642 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 261
2641 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
2640 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs

Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar

Abstract:

The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.

Keywords: Internet Gateway, MANET, mobility, selection criteria

Procedia PDF Downloads 424
2639 Three-Dimensional Model of Leisure Activities: Activity, Relationship, and Expertise

Authors: Taekyun Hur, Yoonyoung Kim, Junkyu Lim

Abstract:

Previous works on leisure activities had been categorizing activities arbitrarily and subjectively while focusing on a single dimension (e.g. active-passive, individual-group). To overcome these problems, this study proposed a Korean leisure activities’ matrix model that considered multidimensional features of leisure activities, which was comprised of 3 main factors and 6 sub factors: (a) Active (physical, mental), (b) Relational (quantity, quality), (c) Expert (entry barrier, possibility of improving). We developed items for measuring the degree of each dimension for every leisure activity. Using the developed Leisure Activities Dimensions (LAD) questionnaire, we investigated the presented dimensions of a total of 78 leisure activities which had been enjoyed by most Koreans recently (e.g. watching movie, taking a walk, watching media). The study sample consisted of 1348 people (726 men, 658 women) ranging in age from teenagers to elderlies in their seventies. This study gathered 60 data for each leisure activity, a total of 4860 data, which were used for statistical analysis. First, this study compared 3-factor model (Activity, Relation, Expertise) fit with 6-factor model (physical activity, mental activity, relational quantity, relational quality, entry barrier, possibility of improving) fit by using confirmatory factor analysis. Based on several goodness-of-fit indicators, the 6-factor model for leisure activities was a better fit for the data. This result indicates that it is adequate to take account of enough dimensions of leisure activities (6-dimensions in our study) to specifically apprehend each leisure attributes. In addition, the 78 leisure activities were cluster-analyzed with the scores calculated based on the 6-factor model, which resulted in 8 leisure activity groups. Cluster 1 (e.g. group sports, group musical activity) and Cluster 5 (e.g. individual sports) had generally higher scores on all dimensions than others, but Cluster 5 had lower relational quantity than Cluster 1. In contrast, Cluster 3 (e.g. SNS, shopping) and Cluster 6 (e.g. playing a lottery, taking a nap) had low scores on a whole, though Cluster 3 showed medium levels of relational quantity and quality. Cluster 2 (e.g. machine operating, handwork/invention) required high expertise and mental activity, but low physical activity. Cluster 4 indicated high mental activity and relational quantity despite low expertise. Cluster 7 (e.g. tour, joining festival) required not only moderate degrees of physical activity and relation, but low expertise. Lastly, Cluster 8 (e.g. meditation, information searching) had the appearance of high mental activity. Even though clusters of our study had a few similarities with preexisting taxonomy of leisure activities, there was clear distinctiveness between them. Unlike the preexisting taxonomy that had been created subjectively, we assorted 78 leisure activities based on objective figures of 6-dimensions. We also could identify that some leisure activities, which used to belong to the same leisure group, were included in different clusters (e.g. filed ball sports, net sports) because of different features. In other words, the results can provide a different perspective on leisure activities research and be helpful for figuring out what various characteristics leisure participants have.

Keywords: leisure, dimensional model, activity, relationship, expertise

Procedia PDF Downloads 311
2638 Forensic Investigation Into the Variation of Geological Properties of Soils Bintulu, Sarawak

Authors: Jaithish John

Abstract:

In this paper a brief overview is provided of the developments in interdisciplinary knowledge exchange with use of soil and geological (earth) materials in the search for evidence. The aim is to provide background information on the role and value of understanding ‘earth materials’ from the crime scene through to microscopic scale investigations to support law enforcement agencies in solving criminal and environmental concerns and investigations. This involves the sampling, analysis, interpretation and explanation presentation of all these evidences. In this context, field and laboratory methods are highlighted for the controlled / referenced sample, alibi sample and questioned sample. The aim of forensic analyses of earth materials is to associate these samples taken from a questioned source to determine if there are similar and outstanding characteristics features of earth materials crucial to support the investigation to the questioned earth materials and compare it to the controlled / referenced sample and alibi samples.

Keywords: soil, texture, grain, microscopy

Procedia PDF Downloads 84
2637 Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Au/GaN Schottky diodes

Authors: Abdelaziz Rabehi

Abstract:

The current–voltage (I–V) characteristics of Au/GaN Schottky diodes were measured at room temperature. In addition, capacitance–voltage–frequency (C–V–f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. From the I–V characteristics of the Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.22 and 0.56 eV, respectively, were obtained from a forward bias I–V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I–V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The C–V curves gave a barrier height value higher than those obtained from I–V measurements. This discrepancy is due to the different nature of the I–V and C–V measurement techniques.

Keywords: Schottky diodes, frequency dependence, barrier height, interface states

Procedia PDF Downloads 302
2636 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
2635 The Investigation and Analysis of Village Remains in Jinzhong Prefecture of Shanxi Province, China

Authors: Zhang Yu

Abstract:

Shanxi Province is a province with a long history in China. The historical characteristics of Jinzhong Prefecture in Shaanxi Province are very prominent. This research has done a lot of field research and analysis, and has analyzed a large number of documents. The formation and characteristics of villages in Jinzhong Prefecture are summarized. But the remains of many areas have not been systematically discovered and analyzed. This study found that the reasons for the formation of villages are natural, cultural, traffic and economic reasons. It mainly includes water, mountain, and developed business culture during the Ming and Qing Dynasties. By analyzing the evolution characteristics of each period, the characteristics and remains of the existing villages are explained in detail. These types of relics mainly include courtyards, fortresses, and Exchange shops. This study can provide systematic guidance on the protection of future village remains.

Keywords: Jinzhong Prefecture, village, features, remains

Procedia PDF Downloads 146
2634 Peer-Mediated Intervention for Social Communication Difficulties in Adolescents with Autism: Literature Review and Research Recommendations

Authors: Christine L. Cole

Abstract:

Adolescents with Autism Spectrum Disorders (ASD) often experience social-communication difficulties that negatively impact their social interactions with typical peers. However, unlike other age and disability groups, there is little intervention research to inform best practice for these students. One evidence-based strategy for younger students with ASD is peer-mediated intervention (PMI). PMI may be particularly promising for use with adolescents, as peers are readily available and natural experts for encouraging authentic high school conversations. This paper provides a review of previous research that evaluated the use of PMI to improve the social-communication skills of students with ASD. Specific intervention features associated with positive student outcomes are identified and recommendations for future research are provided. Adolescents with ASD are targeted due to the critical importance of social conversation at the high school level.

Keywords: autism, peer-mediation, social communication, adolescents

Procedia PDF Downloads 472
2633 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 127
2632 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161
2631 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 530
2630 Enhancement Performance of Desalination System Using Humidification and Dehumidification Processes

Authors: Zeinab Syed Abdel Rehim

Abstract:

Water shortage is considered as one of the huge problems the world encounter now. Water desalination is considered as one of the more suitable methods governments can use to substitute the increased need for potable water. The humidification-dehumidification process for water desalination is viewed as a promising technique for small capacity production plants. The process has several attraction features which include the use of sustainable energy sources, low technology, and low-temperature dehumidification. A pilot experimental set-up plant was constructed with the conventional HVAC components such as air blower that supplies air to an air duct inside which air preheater, steam injector and cooling coil of a small refrigeration unit are placed. The present work evaluates the characteristics of humidification-dehumidification process for water desalination as a function of air flow rate, total power input and air inlet temperature in order to study the optimum conditions required to produce distilled water.

Keywords: condensation, dehumidification, evaporation, humidification, water desalination

Procedia PDF Downloads 243
2629 The Acoustic Features of Ulu Terengganu Malay Monophthongs

Authors: Siti Nadiah Nuwawi, Roshidah Hassan

Abstract:

Dialect is one of the language variants emerge due to certain factors. One of the distinctive dialects spoken by people in Malaysia is the one spoken by those who reside in the inland area of the East Peninsular Malaysia; Hulu Terengganu, which is known as Ulu Terengganu Malay dialect. This dialect is unique since it possesses ancient elements in its phonology elements, which makes it is hard to be understood by people who come from other states. There is dearth of acoustic studies of the dialect in which this paper aims to attain by describing the quality of the monophthongs found in the dialect instrumentally based on their first and second formant values. The hertz values are observed and recorded from the waveforms and spectrograms depicted in PRAAT version 6.0.43 software. The findings show that Ulu Terengganu Malay speakers produced ten monophthongs namely /ɛ/, /e/, /a/, /ɐ/, /ɞ/, /ɔ/, /i/, /o/, /ɵ/ and /ɘ/ which applauds a few monophthongs suggested by past researchers which were based on auditory impression namely /ɛ/, /e/, /a/, ɔ/, and /i/. It also discovers the other five monophthongs of the dialect which are unknown before namely /ɐ/, /ɞ/, /o/, /ɵ/ and /ɘ/.

Keywords: acoustic analysis, dialect, formant values, monophthongs, Ulu Terengganu Malay

Procedia PDF Downloads 176
2628 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 528
2627 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: cell mechanics, computational models, continuum approach, mechanical models

Procedia PDF Downloads 363
2626 Terrorism: A Threat in Constant Evolution Still Misunderstood

Authors: M. J. Gazapo Lapayese

Abstract:

It is a well-established fact that terrorism is one of the foremost threats to present-day international security. The creation of tools or mechanisms for confronting it in an effective and efficient manner will only be possible by way of an objective assessment of the phenomenon. In order to achieve this, this paper has the following three main objectives: Firstly, setting out to find the reasons that have prevented the establishment of a universally accepted definition of terrorism, and consequently trying to outline the main features defining the face of the terrorist threat in order to discover the fundamental goals of what is now a serious blight on world society. Secondly, trying to explain the differences between a terrorist movement and a terrorist organisation, and the reasons for which a terrorist movement can be led to transform itself into an organisation. After analysing these motivations and the characteristics of a terrorist organisation, an example of the latter will be succinctly analysed to help the reader understand the ideas expressed. Lastly, discovering and exposing the factors that can lead to the appearance of terrorist tendencies, and discussing the most efficient and effective responses that can be given to this global security threat.

Keywords: responses, resilience, security, terrorism

Procedia PDF Downloads 453
2625 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns

Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez

Abstract:

In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.

Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics

Procedia PDF Downloads 412
2624 Research on a Digital Basketball Sports Game (DBSG) Framework Based on the Female Perspective

Authors: Ran Yue, Zhejing Li

Abstract:

Context: The context of this study is the field of Digital Basketball Sports Games (DBSG). The existing DBSGs often prioritize competitiveness and confrontation, neglecting the narrative and progressive expression, especially from a female standpoint. This study aims to address this gap by analyzing existing DBSGs and proposing a comprehensive framework tailored to meet the needs and desires of women in basketball. Research Aim: The aim of this research is to examine the narrative perspectives of women in basketball and understand their desires and expectations within the sport. It also seeks to investigate methods to seamlessly integrate women's basketball stories into gameplay, addressing their specific needs and expectations. Additionally, the study aims to develop a digital basketball sports game framework that combines narrative richness and entertainment, with a focus on the female audience. Methodology: The study utilizes affective-arousal theories as a psychological framework to explore how emotional arousal influences player engagement and responses in the digital basketball sports game. It employs in-depth case studies to examine specific instances and gain insights into the implementation and impact of narrative elements and educational features in existing DBSGs. Comparative studies are conducted to analyze different DBSGs, identifying effective strategies and shortcomings. Findings: The research findings contribute to the development of a digital basketball game framework from a female perspective. This framework enhances the completeness, diversity, and inclusivity of digital basketball sports games. By addressing the specific needs of women in basketball, including fundamental knowledge, sports skills, safety awareness, and rehabilitation training methods, the framework provides a foundational reservoir for a broader range of basketball participation. It enriches the gaming experience by enhancing enjoyment, narrative, and diversity. It also acts as a catalyst to encourage more women to engage with basketball stories, participate in the sport, persevere, and derive greater enjoyment while benefiting their physical fitness and health. Theoretical Importance: The study contributes to the existing literature by incorporating game motivation psychology theories and proposing a comprehensive framework that caters to the specific needs of women in basketball. It emphasizes the importance of considering the narrative and progressive expression in DBSGs, especially from a female perspective. The research explores affective-arousal theories and provides insights into how emotional arousal can influence player engagement and responses in digital basketball sports games. Data Collection and Analysis Procedures: The study collects data through in-depth case studies of existing DBSGs, examining specific instances to uncover insights into the implementation and impact of narrative elements and educational features. Comparative studies are conducted to contrast and analyze various DBSGs, identifying effective strategies and shortcomings. The analysis procedures involve identifying commonalities, differences, strengths, and weaknesses among the DBSGs, guiding the development of a female-centric perspective in the proposed framework. Questions Addressed: The study addresses the following questions: What are the narrative perspectives of women in basketball? How can women's basketball stories be seamlessly integrated into gameplay? What are the specific needs and expectations of women in basketball? What effective strategies and shortcomings exist in current DBSGs? How can a digital basketball game framework be developed to cater to the female audience? Conclusion: In conclusion, this study contributes to the field of DBSGs by proposing a comprehensive digital basketball game framework from a female perspective. The framework enhances the inclusivity, diversity, and enjoyment of DBSGs by addressing the specific needs and desires of women in basketball. It provides a foundation for a broader range of basketball participation, enriching the gaming experience and benefiting women's physical fitness and health. The research, using affective-arousal theories and in-depth case studies, provides valuable insights into the implementation and impact of narrative elements and educational features in existing DBSGs, guiding the development of the proposed female-centric framework.

Keywords: digital basketball game, game framework, female perspective, game narratives

Procedia PDF Downloads 65