Search results for: clustering images
1095 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3051094 Changes in Religious Belief after Flood Disasters
Authors: Sapora Sipon, Mohd Fo’ad Sakdan, Che Su Mustaffa, Najib Ahmad Marzuki, Mohamad Sukeri Khalid, Mohd Taib Ariffin, Husni Mohd Radzi, Salhah Abdullah
Abstract:
Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood.Keywords: religious belief, flood disaster, humanity, society
Procedia PDF Downloads 4071093 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology
Authors: Guankai Lin, Wei Tong, Hong Zhu
Abstract:
The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method
Procedia PDF Downloads 1531092 Quantum Entangled States and Image Processing
Authors: Sanjay Singh, Sushil Kumar, Rashmi Jain
Abstract:
Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices.Keywords: Greenberger-Horne-Zeilinger, image storage and retrieval, quantum entanglement, W states
Procedia PDF Downloads 3061091 Classify Land Use/Cover Change and Its Impact on Soil Erosion Using GIS from 2005 to 2015 in Nzhelele Valley Limpopo Province, South Africa
Authors: Blessing Mavhuru, Nthaduleni Nethengwe, Hector Chikoore, Onyango Beneah Daniel Odhiambo
Abstract:
The main objective of this study was to classify land use/cover and how it has changed in Nzhelele Valley Limpopo Province, South Africa. The study aimed to identify and analyse the types of land use/cover in the years 2005, 2010, and 2015 with a view to assess the impact on soil erosion over time. Using GIS, the changes within land use/cover were assessed through the classification of satellite images. The study area was classified into four major land cover/use classes, which are vegetation, gravel road, built up land and agricultural fields. Over the period 2005-2015 the resultant land use/cover demonstrated (i) a significant increase (12%) for vegetation cover, (ii) a significant decrease in agriculture (16%) land use/cover, (iii) increase in built-up land (1%), as well as (iv) an increase in gravel roads (3%). This study envisages assisting policy makers in decision making on land use management for Nzhelele Valley.Keywords: land use, land cover, change, soil erosion
Procedia PDF Downloads 2511090 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 981089 Exploring the Unintended Consequences of Loyalty programs in the Gambling Sector
Authors: Violet Justine Mtonga, Cecilia Diaz
Abstract:
this paper explores the prevalence of loyalty programs in the UK gambling industry and their association with unintended consequences and harm amongst program members. The use of loyalty programs within the UK gambling industry has risen significantly with over 40 million cards in circulation. Some research suggests that as of 2013-2014, nearly 95% of UK consumers have at least one loyalty card with 78% being members of two or more programs, and the average household possesses ‘22 loyalty programs’, nearly half of which tend to be used actively. The core design of loyalty programs is to create a relational ‘win-win’ approach where value is jointly created between the parties involved through repetitive engagement. However, main concern about the diffusion of gambling organisations’ loyalty programs amongst consumers, might be the use by the organisations within the gambling industry to over influence customer engagement and potentially cause unintended harm. To help understand the complex phenomena of the diffusions and adaptation of the use of loyalty programs in the gambling industry, and the potential unintended outcomes, this study is theoretically underpinned by the social exchange theory of relationships entrenched in the processes of social exchanges of resources, rewards, and costs for long-term interactions and mutual benefits. Qualitative data were collected via in-depth interviews from 14 customers and 12 employees within the UK land-based gambling firms. Data were analysed using a combination of thematic and clustering analysis to help reveal and discover the emerging themes regarding the use of loyalty cards for gambling companies and exploration of subgroups within the sample. The study’s results indicate that there are different unintended consequences and harm of loyalty program engagement and usage such as maladaptive gambling behaviours, risk of compulsiveness, and loyalty programs promoting gambling from home. Furthermore, there is a strong indication of a rite of passage among loyalty program members. There is also strong evidence to support other unfavorable behaviors such as amplified gambling habits and risk-taking practices. Additionally, in pursuit of rewards, loyalty program incentives effectuate overconsumption and heighten expenditure. Overall, the primary findings of this study show that loyalty programs in the gambling industry should be designed with an ethical perspective and practice.Keywords: gambling, loyalty programs, social exchange theory, unintended harm
Procedia PDF Downloads 891088 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1261087 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries
Authors: Fatma Abdedayem
Abstract:
We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW
Procedia PDF Downloads 2971086 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 721085 Significance of Archetypal Sounds: Exploring Mystical Practices of Uttarakhand Himalayas
Authors: Vineet Gairola
Abstract:
In many cultures, ethnographers have tried to set up a tight link between music and possession. However, they rarely informed us about the psychology of interactions between music and the possessed. Ancient myths and the archetypal find expression through the rituals practiced in Uttarakhand. In Uttarakhand (a part of the Central Himalayan region), an intriguing archetypal healing mechanism takes place. Some people get 'possessed' by a deity and shower blessings onto people gathered for a puja in a temple, where invocation of deity takes place through two archetypal drumming instruments played together named dhol-damaun. There is devi-doli (palanquin of the goddess) worship, which is carried on the shoulders of two people and is said to be tilting and shaking on its own. Archetypal in the modern mind survives effortlessly. The 'oceanic' of religious feelings are explored through an oral text of Dholsagar. The method of ethnography along with case-studies has been used. A substantial part of fieldwork was carried out in Rudraprayag, Uttarakhand. The research suggests that the collective unconscious is also sonic in nature, which is characterized by sounds and rhythms—not only symbols and images, as Dr. Jung suggested.Keywords: archetypal, music, myth, mysticism, possession, sonic collective unconscious
Procedia PDF Downloads 1271084 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 801083 Detection of Image Blur and Its Restoration for Image Enhancement
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.Keywords: image enhancement, motion analysis, motion detection, motion estimation
Procedia PDF Downloads 2871082 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 701081 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce
Authors: Hang Wang, Xiaoming Gao
Abstract:
The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.Keywords: big data, consumption centers, e-commerce, urban planning, jinan
Procedia PDF Downloads 201080 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 3381079 Multi-Modal Visualization of Working Instructions for Assembly Operations
Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger
Abstract:
Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization
Procedia PDF Downloads 1651078 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 761077 Heritage Making Process of Urban Movements: A Case Study on the Public Struggle for 100% Open Tempelhofer Feld
Authors: Dilsad Aladag
Abstract:
From the closure of Tempelhofer Airport and the field in 2008 till 2014, the field's opening to public use was a subject of an urban movement that comprised demonstrations, protests, squats, workshops, panels, petition campaigns, and a referendum in 2014. As a result, Tempelhofer Feld is an open urban space for the use of Berliners today and protected by 'ThF law'. This analysis questioned how these urban movements' story is narrated and interpreted by two actor groups involved: citizen initiatives and city officials. Representation and communication take a vital part in transmitting and narrating meanings in heritage discourse and practice. Therefore, this research focused on particular websites as channels of representation and communication that these stakeholder groups maintained. The narrative analysis aims to examine meanings and stories portrayed with texts and images on the stakeholder's websites. This paper shares the essential findings of research and draws new questions regarding the urban heritage as both a source and a result of conflicts and stakeholders' role as producers of narrations of urban heritage.Keywords: conflict, heritage, urban movement, representation
Procedia PDF Downloads 1761076 Image Encryption Using Eureqa to Generate an Automated Mathematical Key
Authors: Halima Adel Halim Shnishah, David Mulvaney
Abstract:
Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation
Procedia PDF Downloads 4821075 Transformation of the Ili Delta Ecosystems Related to the Runoff Control of the Ile-Balkhash Basin Rivers
Authors: Ruslan Salmurzauli, Sabir Nurtazin, Buho Hoshino, Niels Thevs, A. B. Yeszhanov, Aiman Imentai
Abstract:
This article presents the results of a research on the transformation of the diverse ecosystems of the Ili delta during the period 1979-2014 based on the analysis of the hydrological regime dynamics, weather conditions and satellite images. Conclusions have been drawn on the decisive importance of the water runoff of the Ili River in the negative changes and environmental degradation in delta areas over the past forty-five years. The increase of water consumption in the Chinese and Kazakhstan parts of the Ili-Balkhash basin caused desiccation and desertification of many hydromorphic delta ecosystems and the reduction of water flow into Lake Balkhash. We demonstrate that a significant reduction of watering of the delta areas could drastically accelerate the aridization and degradation of the hydromorphic ecosystems. Under runoff decrease, a transformation process of the delta ecosystems begins from the head part and gradually spread northward to the periphery of the delta. The desertification is most clearly expressed in the central and western parts of the delta areas.Keywords: Ili-Balkhash basin, Ili river delta, runoff, hydrological regime, transformation of ecosystems, remote sensing
Procedia PDF Downloads 4341074 From Ritual City to Modern City: The City Space Transformation of Xi’an in the Early 20th Century
Authors: Zhang Bian, Zhao Jijun
Abstract:
The urban layout of Xi’an city (the capital Chang’an in the Tang dynasty) was shaped by feudal etiquette, but this dominant factor was replaced by modern city planning during the period of the Republic of China. This makes Xi’an a representative case to explore the transformation process of Chinese cities in the early 20th century. By analyzing the contrast and connection between the historical texts of city planning and the realistic construction activities recorded by the maps and images, this paper reviews the transformation process of the urban space of Xi’an in the early 20th century and divides it into four phases according to important events that significantly impacted planning and construction activities. Based on this, the entire transformation of Xi’an’s city planning and practices can be characterized by three aspects: 1) the dominant force of the city plan and construction changed with the establishment of modern city administrations; 2) the layout of the city was continuously broadened to meet the demand of modern economy and city life; and, 3) the ritual space was transformed into practical space for commercial and recreational activities.Keywords: city space, the early 20th century, transformation, Xi’an city
Procedia PDF Downloads 1641073 Digitization and Morphometric Characterization of Botanical Collection of Indian Arid Zones as Informatics Initiatives Addressing Conservation Issues in Climate Change Scenario
Authors: Dipankar Saha, J. P. Singh, C. B. Pandey
Abstract:
Indian Thar desert being the seventh largest in the world is the main hot sand desert occupies nearly 385,000km2 and about 9% of the area of the country harbours several species likely the flora of 682 species (63 introduced species) belonging to 352 genera and 87 families. The degree of endemism of plant species in the Thar desert is 6.4 percent, which is relatively higher than the degree of endemism in the Sahara desert which is very significant for the conservationist to envisage. The advent and development of computer technology for digitization and data base management coupled with the rapidly increasing importance of biodiversity conservation resulted in the invention of biodiversity informatics as discipline of basic sciences with multiple applications. Aichi Target 19 as an outcome of Convention of Biological Diversity (CBD) specifically mandates the development of an advanced and shared biodiversity knowledge base. Information on species distributions in space is the crux of effective management of biodiversity in the rapidly changing world. The efficiency of biodiversity management is being increased rapidly by various stakeholders like researchers, policymakers, and funding agencies with the knowledge and application of biodiversity informatics. Herbarium specimens being a vital repository for biodiversity conservation especially in climate change scenario the digitization process usually aims to improve access and to preserve delicate specimens and in doing so creating large sets of images as a part of the existing repository as arid plant information facility for long-term future usage. As the leaf characters are important for describing taxa and distinguishing between them and they can be measured from herbarium specimens as well. As a part of this activity, laminar characterization (leaves being the most important characters in assessing climate change impact) initially resulted in classification of more than thousands collections belonging to ten families like Acanthaceae, Aizoaceae, Amaranthaceae, Asclepiadaceae, Anacardeaceae, Apocynaceae, Asteraceae, Aristolochiaceae, Berseraceae and Bignoniaceae etc. Taxonomic diversity indices has also been worked out being one of the important domain of biodiversity informatics approaches. The digitization process also encompasses workflows which incorporate automated systems to enable us to expand and speed up the digitisation process. The digitisation workflows used to be on a modular system which has the potential to be scaled up. As they are being developed with a geo-referencing tool and additional quality control elements and finally placing specimen images and data into a fully searchable, web-accessible database. Our effort in this paper is to elucidate the role of BIs, present effort of database development of the existing botanical collection of institute repository. This effort is expected to be considered as a part of various global initiatives having an effective biodiversity information facility. This will enable access to plant biodiversity data that are fit-for-use by scientists and decision makers working on biodiversity conservation and sustainable development in the region and iso-climatic situation of the world.Keywords: biodiversity informatics, climate change, digitization, herbarium, laminar characters, web accessible interface
Procedia PDF Downloads 2291072 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures
Authors: Mohsen Padervand
Abstract:
Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli
Procedia PDF Downloads 3311071 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 2681070 3D Plant Growth Measurement System Using Deep Learning Technology
Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka
Abstract:
The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing
Procedia PDF Downloads 2731069 Woman: Her Identity and Strive for Existence Reflected English Literature
Authors: Diksha Kadam
Abstract:
The study of images of women in literature and women writers has been a significant area of concern for the last four decades because it is as ‘the study of signification and meaning production’ play a vital role in shaping the perceptions and consciousness of various segment of society in relation to the lives, roles, problems and experiences of different categories of women as women and as autonomous citizen of society. In the history of worlds English literature the status of women and representation of her in the writings is an issue of discussion always. The essence of her existence in the literature is felt; the ecstasy of her feelings is always seen. The literature is full of facts and figures. She is one of them. Her contribution to the literature is undoubtedly a beginning of a new era. Multiple challenges and multiple identities as represented in majority of the literary texts and in real provide much hope and assurance to the new generation of mothers and daughters in the direction of transformation of the individual and collective consciousness of society paving way for the emergence of an actually empowered new woman. This paper will focus on some of the prominent Indian and American women writers in English literature and the various dimensions of her image through some of the prominent works. This attempt of mine will be merely a salute to those women who have struggled to prove their identity as one of the members of society.Keywords: role of women’s writing, new era, contribution to the literature, consciousness, existence
Procedia PDF Downloads 4011068 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning
Authors: Siham Boulaknadel
Abstract:
Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.Keywords: Amazigh language, e-learning, storytelling, language teaching
Procedia PDF Downloads 4031067 Magnetorheological Elastomer Composites Obtained by Extrusion
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties
Procedia PDF Downloads 3181066 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 410