Search results for: spectroscopy data analysis
41375 Exploration of RFID in Healthcare: A Data Mining Approach
Authors: Shilpa Balan
Abstract:
Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.Keywords: RFID, data mining, data analysis, healthcare
Procedia PDF Downloads 23341374 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps
Procedia PDF Downloads 12541373 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 6341372 Re-Constructing the Research Design: Dealing with Problems and Re-Establishing the Method in User-Centered Research
Authors: Kerem Rızvanoğlu, Serhat Güney, Emre Kızılkaya, Betül Aydoğan, Ayşegül Boyalı, Onurcan Güden
Abstract:
This study addresses the re-construction and implementation process of the methodological framework developed to evaluate how locative media applications accompany the urban experiences of international students coming to Istanbul with exchange programs in 2022. The research design was built on a three-stage model. The research team conducted a qualitative questionnaire in the first stage to gain exploratory data. These data were then used to form three persona groups representing the sample by applying cluster analysis. In the second phase, a semi-structured digital diary study was carried out on a gamified task list with a sample selected from the persona groups. This stage proved to be the most difficult to obtaining valid data from the participant group. The research team re-evaluated the design of this second phase to reach the participants who will perform the tasks given by the research team while sharing their momentary city experiences, to ensure the daily data flow for two weeks, and to increase the quality of the obtained data. The final stage, which follows to elaborate on the findings, is the “Walk & Talk,” which is completed with face-to-face and in-depth interviews. It has been seen that the multiple methods used in the research process contribute to the depth and data diversity of the research conducted in the context of urban experience and locative technologies. In addition, by adapting the research design to the experiences of the users included in the sample, the differences and similarities between the initial research design and the research applied are shown.Keywords: digital diary study, gamification, multi-model research, persona analysis, research design for urban experience, user-centered research, “Walk & Talk”
Procedia PDF Downloads 17141371 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents
Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom
Abstract:
Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine
Procedia PDF Downloads 45941370 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process
Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy
Abstract:
In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.Keywords: hydrogen production, water splitting, photocatalysts, Graphene
Procedia PDF Downloads 18841369 Brand Placement Strategies in Turkey: The Case of “Yalan Dünya”
Authors: Burçe Boyraz
Abstract:
This study examines appearances of brand placement as an alternative communication strategy in television series by focusing on Yalan Dünya which is one of the most popular television series in Turkey. Consequently, this study has a descriptive research design and quantitative content analysis method is used in order to analyze frequency and time data of brand placement appearances in first 3 seasons of Yalan Dünya with 16 episodes. Analysis of brand placement practices in Yalan Dünya is dealt in three categories: episode-based analysis, season-based analysis and comparative analysis. At the end, brand placement practices in Yalan Dünya are evaluated in terms of type, form, duration and legal arrangements. As a result of this study, it is seen that brand placement plays a determinant role in Yalan Dünya content. Also, current legal arrangements make brand placement closer to other traditional communication strategies instead of differing brand placement from them distinctly.Keywords: advertising, alternative communication strategy, brand placement, Yalan Dünya
Procedia PDF Downloads 24841368 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method
Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary
Abstract:
Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method
Procedia PDF Downloads 43041367 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey
Authors: Erdal Akyol, Mutlu Alkan
Abstract:
Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics
Procedia PDF Downloads 45941366 An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH
Authors: Khabat M. Ahmad
Abstract:
This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate.Keywords: flow rate, pH, permeability, fine migration, formation damage, XRD, SEM- EDS
Procedia PDF Downloads 6041365 Bi-Layer Electro-Conductive Nanofibrous Conduits for Peripheral Nerve Regeneration
Authors: Niloofar Nazeri, Mohammad Ali Derakhshan, Reza Faridi Majidi, Hossein Ghanbari
Abstract:
Injury of peripheral nervous system (PNS) can lead to loss of sensation or movement. To date, one of the challenges for surgeons is repairing large gaps in PNS. To solve this problem, nerve conduits have been developed. Conduits produced by means of electrospinning can mimic extracellular matrix and provide enough surface for further functionalization. In this research, a conductive bilayer nerve conduit with poly caprolactone (PCL), poly (lactic acid co glycolic acid) (PLGA) and MWCNT for promoting peripheral nerve regeneration was fabricated. The conduit was made of longitudinally aligned PLGA nanofibrous sheets in the lumen to promote nerve regeneration and randomly oriented PCL nanofibers on the outer surface for mechanical support. The intra-luminal guidance channel was made out of conductive aligned nanofibrous rolled sheets which are coated with laminin via dopamine. Different properties of electrospun scaffolds were investigated by using contact angle, mechanical strength, degradation time, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM analysis was shown that size range of nanofibrous mat were about 600-750 nm and MWCNTs deposited between nanofibers. The XPS result was shown that laminin attached to the nanofibers surface successfully. The contact-angle and tensile tests analysis revealed that scaffolds have good hydrophilicity and enough mechanical strength. In vitro studies demonstrated that this conductive surface was able to enhance the attachment and proliferation of PC12 and Schwann cells. We concluded that this bilayer composite conduit has good potential for nerve regeneration.Keywords: conductive, conduit, laminin, MWCNT
Procedia PDF Downloads 20041364 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16241363 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle
Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska
Abstract:
Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)
Procedia PDF Downloads 61841362 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 11641361 Standard Languages for Creating a Database to Display Financial Statements on a Web Application
Authors: Vladimir Simovic, Matija Varga, Predrag Oreski
Abstract:
XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange
Procedia PDF Downloads 39441360 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 46841359 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia
Authors: Ikawati Wulandari
Abstract:
Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakageKeywords: PPM, Geothermal, Fault, Grabag
Procedia PDF Downloads 46641358 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 13541357 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 3641356 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter
Procedia PDF Downloads 30441355 A Study on the Synthesis of Boron Nitride Microtubes
Authors: Pervaiz Ahmad, Mayeen Uddin Khandaker, Yusoff Mohd Amin
Abstract:
A unique cone-like morphologies of boron nitride microtubes with larger internal space and thin walls structure are synthesized in a dual zone quartz tube furnace at 1200 ° C with ammonia as a reaction atmosphere. The synthesized microtubes are found to have diameter in the range of 1 to ̴ 2 μm with walls thickness estimated from 10 – 100 nm. XPS survey shows N 1s and B 1s peaks at 398.7 eV and 191 eV that represent h-BN in the sample. Raman spectroscopy indicates a high intensity peak at 1372.53 (cm-1) that corresponds to the E2g mode of h-BN.Keywords: BNMTs, synthesis, reaction atmosphere, growth
Procedia PDF Downloads 38441354 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 49841353 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 6941352 Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation
Authors: Laila Mahtout, Kerami Ahmed, Rabhi Souhila
Abstract:
The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%.Keywords: acid dye, ultraviolet rays, degradation, photocatalyse
Procedia PDF Downloads 19441351 Effective Factors on Self-Care in Women with Osteoporosis: A Study with Content Analysis Approach
Authors: Arezoo Fallahi, Siamak Derakhshan, Parvaneh Taymoori, Babak Nematshahrbabaki
Abstract:
Background: Osteoporosis, the most common metabolic bone disease, is an important health care issue. Not only the cost of disease is high but also is one of the causes of disability and mortality and effect on quality of life. Although self-care is effective on disease, s control and treatment but still effective factors on self-care of patient, s viewpoint have not been survey. The aim of this study was to explore effective factors on self-care in women with osteoporosis. Materials and methods: This study was done by conventional content analysis approach in year 2014. Through purposeful sampling 15 women referred to bone mass densitometry centers participated in this study. Inclusion criteria were: Women older than 50 years old with osteoporosis, final diagnosis of osteoporosis for over six –month period, T-score index below -2.5 (lower back or hip), drug use by patients with a physician’s prescription, ability in speaking and attending to participate in the study. Data was collected by face to face and group semi-structure deep interviews and analyzed via content analysis method. To support of rigor of data, criteria credibility, confirmability and transferability were used. Results: during data analysis five categories developed: “hope and disability in the face of illness”, “mutual roles of physician”, “role of family” and “administrative centers and organizations”. To perform self-care behaviors, the participations of this study emphasized on pay attention to their own healthy, regarding patients' rights by physician, pay attention to women's health by men, and the role of media especially radio and television. Conclusion: the finding of the study showed that women’s responsibility with osteoporosis for their health is not a factor but it is multifactorial. Increasing life expectancy in patients, attention to patients needs by physician, increasing health promotion programs in the media and enhancing role of family may provide conditions and infrastructure to empowerment women in doing self-care behavior.Keywords: women, osteoporosis, self-care, content analysis
Procedia PDF Downloads 46341350 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach
Authors: Adel A. Ghobbar
Abstract:
The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.Keywords: supportability, no fault found, FMEA, early failure, availability, operational reliability, predictive model
Procedia PDF Downloads 12741349 Data Science Inquiry to Manage Football Referees’ Careers
Authors: Iñaki Aliende, Tom Webb, Lorenzo Escot
Abstract:
There is a concern about the decrease in football referees globally. A study in Spain has analyzed the factors affecting a referee's career over the past 30 years through a survey of 758 referees. Results showed the impact of factors such as threats, education, initial vocation, and dependents on a referee's career. To improve the situation, the federation needs to provide better information, support young referees, monitor referees, and raise public awareness of violence toward referees. The study also formed a comprehensive model for federations to enhance their officiating policies by means of data-driven techniques that can serve other federations to improve referees' careers.Keywords: data science, football referees, sport management, sport careers, survival analysis
Procedia PDF Downloads 9941348 Materialized View Effect on Query Performance
Authors: Yusuf Ziya Ayık, Ferhat Kahveci
Abstract:
Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.Keywords: cost of query, database management systems, materialized view, query performance
Procedia PDF Downloads 28041347 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours
Authors: Charlotte Entwistle, Ryan Boyd
Abstract:
Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data
Procedia PDF Downloads 34941346 Electrode Performance of Carbon Coated Nanograined LiFePO4 in Lithium Batteries
Authors: Princess Stephanie P. Llanos, Rinlee Butch M. Cervera
Abstract:
Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, carbon-coated nanograined LiFePO4 is synthesized via wet chemistry method at a low temperature of 400 °C and investigated its performance as a cathode in Lithium battery. The X-ray diffraction pattern of the synthesized samples can be indexed to an orthorhombic LiFePO4 structure. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LiFePO4 and coating of amorphous carbon layer. Elemental mapping using Energy dispersive spectroscopy analysis revealed the homogeneous dispersion of Fe, P, O, and C elements. On the other hand, the electrochemical performances of the synthesized cathodes were investigated using cyclic voltammetry, galvanostatic charge/discharge tests with different C-rates, and cycling performances. Galvanostatic charge and discharge measurements revealed that the sample sintered at 400 °C for 3 hours with carbon coating demonstrated the highest capacity among the samples which reaches up to 160 mAhg⁻¹ at 0.1C rate.Keywords: cathode, charge-discharge, electrochemical, lithium batteries
Procedia PDF Downloads 331