Search results for: energy conservation strategy
10921 Solid Waste Management Challenges and Possible Solution in Kabul City
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system
Procedia PDF Downloads 33710920 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain
Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik
Abstract:
The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.Keywords: distribution strategy, mathematical model, network design, supply chain management
Procedia PDF Downloads 29710919 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions
Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud
Abstract:
When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort
Procedia PDF Downloads 29410918 Amphibians and Water Quality: An Assessment of Diversity and Physico-Chemical Parameters of Habitats for Amphibians in Sindh, Pakistan
Authors: Kalsoom Shaikh, Saima Memon, Riffat Sultana
Abstract:
Water pollution affects amphibians because they are intimately water dependent. The permeable skin makes amphibians very sensitive to the physico-chemical parameters of their aquatic environment. They spawn in water bodies where quality of water can affect the growth, development, and survival of their eggs which may die even before hatching into larvae or developing into adults due to water contamination. Considering the importance of amphibians in agriculture, food web, ecosystem and pharmaceutics as well as adverse impact of environmental degradation on them, present study was proposed to comprehensively determine the status of their diversity and habitats in Sindh province of Pakistan so as to execute monitoring for their conservation in future. Physico-chemical parameters including pH, EC (electric conductivity), TDS (total dissolved solids), T-Hard (total hardness), T-Alk (total alkalinity), Cl (chloride), CO₂ (carbon dioxide), SO₄ (sulphate), PO₄ (phosphate), NO₂ (nitrite) and NO₃ (nitrate) were analyzed from amphibian habitats using instruments and methodology of analytical grade. The results of present study after being compared with scientific data provided by different researchers and EPA (environmental protection agency), it was concluded that amphibian habitats consisted of high values of analyzed parameters except pH and CO₂. Entire study area required an urgent implementation of conservation actions for saving amphibians.Keywords: amphibians, diversity, habitats, physico-chemical parameters, water quality, Pakistan, Sindh Province
Procedia PDF Downloads 22410917 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock
Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon
Abstract:
The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.Keywords: energy efficiency, heritage, historical building, renovation
Procedia PDF Downloads 29510916 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data
Procedia PDF Downloads 19610915 Economic and Environmental Life Cycle Analysis of Construction and Demolition Waste Management System
Authors: Yanqing Yi, Maria Cristina Lavagnolo, Alessandro Manzardo
Abstract:
Construction and demolition waste (C&DW) is a major challenge in the European Union, emphasizing the urgent need for appropriate waste management processes. Selecting these solutions is challenging, as it requires identifying efficient C&DW management techniques that balance acceptable practices, regulatory compliance, resource conservation, economic viability, and environmental concerns. Techniques for analyzing many kinds of criteria allow for the use of multi-criteria analysis in life cycle assessment (LCA). Although LCA is commonly used to analyze environmental effects, the economic factor has not been fully integrated into the LCA approach in C&DW management. The life cycle costing (LCC) approach was designed to assess economic performance in the C&DW management process. The choice of an effective multi-criteria decision-making (MCDM) technique is critical for the C&DW system. This study seeks to propose a model that employs MCDM by considering LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, indicating it has the highest environmental impact. Finally, suggestions were developed to improve the system's environmental performance.Keywords: life cycle assessment, life cycle costing, construction and demolition waste, multi-criteria decision making
Procedia PDF Downloads 7110914 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Authors: Varun Goel
Abstract:
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs
Procedia PDF Downloads 45210913 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 9310912 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production
Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen
Abstract:
Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.Keywords: sustainable construction, NAC, RAC, emergy, concrete
Procedia PDF Downloads 15010911 Planning Healthy, Livable, and Sustainable Community in Terms of Effective Indicators on Policy Maker
Authors: Reihaneh Rafiemanzelat, Maryam Baradaran
Abstract:
Creating healthy communities that are sustainable and livable is a desire of policy makers in European countries. Indicators have used at the level of international, national, state to evaluate the level of health in cities and regions. Therefore, there are many challenges in the assumption of health and planning indicators. This research provides an overview of health indicators used to date in Europe according to World Health Organization (WHO) strategy. It then discusses on how indicators have been successful to the creation of healthy, livable and sustainable cities in Europe. This research is based on qualitative research to review the documentary researches on health issue and urban planning. The result will show the positive and negative effects of in process indicators on European cities.Keywords: healthy community, livability, sustainability, WHO strategy
Procedia PDF Downloads 34610910 Nanotechnolgy for Energy Harvesting Applications
Authors: Eiman Nour
Abstract:
The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting
Procedia PDF Downloads 6310909 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions
Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer
Abstract:
Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization
Procedia PDF Downloads 13010908 A Critical Examination of the Iranian National Legal Regulation of the Ecosystem of Lake Urmia
Authors: Siavash Ostovar
Abstract:
The Iranian national Law on the Ramsar Convention (officially known as the Convention of International Wetlands and Aquatic Birds' Habitat Wetlands) was approved by the Senate and became a law in 1974 after the ratification of the National Council. There are other national laws with the aim of preservation of environment in the country. However, Lake Urmia which is declared a wetland of international importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976 is now at the brink of total disappearance due mainly to the climate change, water mismanagement, dam construction, and agricultural deficiencies. Lake Urmia is located in the north western corner of Iran. It is the third largest salt water lake in the world and the largest lake in the Middle East. Locally, it is designated as a National Park. It is, indeed, a unique lake both nationally and internationally. This study investigated how effective the national legal regulation of the ecosystem of Lake Urmia is in Iran. To do so, the Iranian national laws as Enforcement of Ramsar Convention in the country including three nationally established laws of (i) Five sets of laws for the programme of economic, social and cultural development of Islamic Republic of Iran, (ii) The Iranian Penal Code, (iii) law of conservation, restoration and management of the country were investigated. Using black letter law methods, it was revealed that (i) regarding the national five sets of laws; the benchmark to force the implementation of the legislations and policies is not set clearly. In other words, there is no clear guarantee to enforce these legislations and policies at the time of deviation and violation; (ii) regarding the Penal Code, there is lack of determining the environmental crimes, determining appropriate penalties for the environmental crimes, implementing those penalties appropriately, monitoring and training programmes precisely; (iii) regarding the law of conservation, restoration and management, implementation of this regulation is adjourned to preparation, announcement and approval of several categories of enactments and guidelines. In fact, this study used a national environmental catastrophe caused by drying up of Lake Urmia as an excuse to direct the attention to the weaknesses of the existing national rules and regulations. Finally, as we all depend on the natural world for our survival, this study recommended further research on every environmental issue including the Lake Urmia.Keywords: conservation, environmental law, Lake Urmia, national laws, Ramsar Convention, water management, wetlands
Procedia PDF Downloads 20310907 Operation '1 Household Dry Toilet for Planting 20 Fruit Trees and/or Acacias on Cropland': Strategy for Promoting Adoption of Well-Managed Agroforestry Systems and Prevent Streaming and Soil Erosion
Authors: Stanis Koko Nyalongomo, Benjamin Mputela Bankanza, Moise Kisempa Mahungudi
Abstract:
Several areas in the Democratic Republic of Congo (DRC) experience serious problems of streaming and soil erosion. Erosion leads to degradation of soil health, and the three main causative factors of similar importance are deforestation, overgrazing, and land agricultural mismanagement. Degradation of soil health leads to a decrease in agricultural productivity and carbon dioxide (CO₂), and other greenhouse gas emissions. Agricultural productivity low, and sanitation-related diseases are a concern of a majority of DRC rural people -whose main livelihoods are conventional smallholder agriculture- due to degradation of agricultural soil health and prevalence of inappropriate sanitation in rural areas. Land management practices that increase soil carbon stocks on agricultural lands with practices including conservation agriculture and agroforestry do not only limit CO₂ emissions but also help prevent erosion while enhancing soil health and productivity. Promotion to adopt sustainable land management practices, especially conversion to well-managed agroforestry practices, is a necessity. This needs to be accompanied by incentives. Methods that incite smallholders to adopt practices that increase carbon stocks in agricultural lands and enhance soil health and productivity for social, economic, and environmental benefits, and give them the ability to get and use household dry toilets -included activities to inform and raise smallholder households awareness on the conversion of croplands to well-managed agroforestry systems through planting at least 20 fruit trees and/or acacias, soil carbon and practices that sequester it in soil and ecological sanitation; and offer smallholders technique and material supports and incentives under the form of dry toilets constructed for free for well-managed agroforestry implementation- were carried out to address problems of soil erosion as well as agricultural productivity and sanitation-related diseases. In 2018 and 2019, 19 of 23 targeted smallholder households expressed their satisfaction and converted their croplands to agroforestry through planting 374 trees, and each gotten 1 dry toilet constructed for free. Their neighbors expressed a willingness to participate in the project. Conversion to well-managed agroforestry practices offers many advantages to both farmers and the environment. The strategy of offering smallholders incentives for soil-friendly agricultural practices, especially well-managed agroforestry, is one of the solutions to prevent soil erosion. DRC rural people whose majority are smallholder households, need to be able to get and use dry toilets. So, dry toilets could be offered like incentives for well-managed agroforestry practices. Given the many advantages agroforestry and dry toilet can offer, recommendations are made for funding organizations to support such projects that promote the adoption of soil health practices.Keywords: agroforestry, croplands, soil carbon, soil health
Procedia PDF Downloads 12310906 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory
Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam
Abstract:
Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry
Procedia PDF Downloads 37310905 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 9710904 Modelling and Simulation of Biomass Pyrolysis
Authors: P. Ahuja, K. S. S. Sai Krishna
Abstract:
There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.Keywords: biomass, fluidisation, pyrolysis, simulation
Procedia PDF Downloads 34210903 An Application of Contingent Valuation Method in Valuing Protected Area: A Case Study of Pulau Kukup National Parks
Authors: A. Mukrimah, M. Mohd Parid, H. F. Lim
Abstract:
Wetland ecosystem has valuable resources that contribute to national income generation and public well-being, either directly by resources that have a market value or indirectly by resources that have no market value. Economic approach is used to evaluate the resources to determine the best use of wetland resources and should be emphasized in policy development planning. This approach is to prevent imbalance in the allocation of resources and welfare benefits. A case study was conducted in 2016 to assess the economic value of wetland ecosystem services at Pulau Kukup National Parks (PKNP). This study has applied dichotomous choice survey design Contingent Valuation Method (CVM) to investigate empirically the willingness-to-pay (WTP) by the public. The study interviewed 400 household respondents at Pontian, Johor. Analysis showed 81% of household interviewed were willing to contribute to the Wetland Conservation Trust Fund. The results also indicated that on average a household was willing to pay RM87 annually. By taking into account 21,664 households in Pontian district in 2016, public’s contribution to conserves wetland ecosystem at PKNP was calculated to be RM1, 884,334. From the public’s interest to contribute to the conservation of wetland ecosystem services at PKNP, it indicates that more concerted effort is needed by both the federal and state governments to conserve and rehabilitate the mangrove ecosystem in Malaysia.Keywords: environmental economy, economic valuation, choice experiment, Pulau Kukup national parks
Procedia PDF Downloads 19010902 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system
Procedia PDF Downloads 8610901 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy
Authors: A. K. Tsafe
Abstract:
The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.Keywords: disabilities, errors, learning, misconceptions
Procedia PDF Downloads 9610900 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction
Authors: Huashan Tai, Chien-Hui Lung
Abstract:
Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.Keywords: biomass energy, orange, torrefaction
Procedia PDF Downloads 29110899 Augmented Reality for Maintenance Operator for Problem Inspections
Authors: Chong-Yang Qiao, Teeravarunyou Sakol
Abstract:
Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.Keywords: augmented reality, situation awareness, decision-making, problem-solving
Procedia PDF Downloads 23010898 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City
Authors: Mohammed Alruwaili
Abstract:
Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.Keywords: renewable energy, smart grid, efficiency, distribution network
Procedia PDF Downloads 14010897 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle
Procedia PDF Downloads 26010896 Analysis of Structural Modeling on Digital English Learning Strategy Use
Authors: Gyoomi Kim, Jiyoung Bae
Abstract:
The purpose of this study was to propose a framework that verifies the structural relationships among students’ use of digital English learning strategy (DELS), affective domains, and their individual variables. The study developed a hypothetical model based on previous studies on language learning strategy use as well as digital language learning. The participants were 720 Korean high school students and 430 university students. The instrument was a self-response questionnaire that contained 70 question items based on Oxford’s SILL (Strategy Inventory for Language Learning) as well as the previous studies on language learning strategies in digital learning environment in order to measure DELS and affective domains. The collected data were analyzed through structural equation modeling (SEM). This study used quantitative data analysis procedures: Explanatory factor analysis (EFA) and confirmatory factor analysis (CFA). Firstly, the EFA was conducted in order to verify the hypothetical model; the factor analysis was conducted preferentially to identify the underlying relationships between measured variables of DELS and the affective domain in the EFA process. The hypothetical model was established with six indicators of learning strategies (memory, cognitive, compensation, metacognitive, affective, and social strategies) under the latent variable of the use of DELS. In addition, the model included four indicators (self-confidence, interests, self-regulation, and attitude toward digital learning) under the latent variable of learners’ affective domain. Secondly, the CFA was used to determine the suitability of data and research models, so all data from the present study was used to assess model fits. Lastly, the model also included individual learner factors as covariates and five constructs selected were learners’ gender, the level of English proficiency, the duration of English learning, the period of using digital devices, and previous experience of digital English learning. The results verified from SEM analysis proposed a theoretical model that showed the structural relationships between Korean students’ use of DELS and their affective domains. Therefore, the results of this study help ESL/EFL teachers understand how learners use and develop appropriate learning strategies in digital learning contexts. The pedagogical implication and suggestions for the further study will be also presented.Keywords: Digital English Learning Strategy, DELS, individual variables, learners' affective domains, Structural Equation Modeling, SEM
Procedia PDF Downloads 12510895 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete
Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen
Abstract:
The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete
Procedia PDF Downloads 29510894 Experimental Verification of On-Board Power Generation System for Vehicle Application
Authors: Manish Kumar, Krupa Shah
Abstract:
The usage of renewable energy sources is increased day by day to overcome the dependency on fossil fuels. The wind energy is considered as a prominent source of renewable energy. This paper presents an approach for utilizing wind energy obtained from moving the vehicle for cell-phone charging. The selection of wind turbine, blades, generator, etc. is done to have the most efficient system. The calculation procedure for power generated and drag force is shown to know the effectiveness of the proposal. The location of the turbine is selected such that the system remains symmetric, stable and has the maximum induced wind. The calculation of the generated power at different velocity is presented. The charging is achieved for the speed 30 km/h and the system works well till 60 km/h. The model proposed seems very useful for the people traveling long distances in the absence of mobile electricity. The model is very economical and easy to fabricate. It has very less weight and area that makes it portable and comfortable to carry along. The practical results are shown by implementing the portable wind turbine system on two-wheeler.Keywords: cell-phone charging, on-board power generation, wind energy, vehicle
Procedia PDF Downloads 29510893 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks
Authors: Mehdi Assefi, Keihan Hataminezhad
Abstract:
One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient
Procedia PDF Downloads 29010892 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving
Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem
Abstract:
This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability
Procedia PDF Downloads 300