Search results for: comprehensive CFD model
17338 The Delone and McLean Model: A Review and Reconceptualisation for Explaining Organisational IS Success
Authors: Probir Kumar Banerjee
Abstract:
Though the revised DeLone and McLean (DM) model of IS success is found to be effective at the individual level of analysis, there is lack of consensus in regard to its effectiveness at the organisational level. This research reviews the DM model in the light of business/IT alignment theory and supporting literature, and suggests its reconceptualization. Specifically, arguments are made for augmenting it with business process quality. Business process quality, it is argued, captures the effect of intent to use, use and user satisfaction interactions, thus eliminating the need to capture their interaction effects in explaining organisational IS success. It is also argued that ‘operational performance’ driven by systems and business process quality, and higher order measures of organisational performance tied to operational performance are appropriate measures of ‘net benefit’. Suggestions are made for reconceptualisation of the other constructs and an adapted model of organisational IS success is proposed.Keywords: organisational IS success, business/IT alignment, systems quality, business process quality, operational performance, market performance
Procedia PDF Downloads 39617337 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.Keywords: simulation model, misalignment, cogs missing, vibration analysis
Procedia PDF Downloads 28417336 External Strengthening of RC Continuous Beams Using FRP Plates: Finite Element Model
Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour
Abstract:
Fiber reinforced polymer (FRP) installation is a very effective way to repair and strengthen structures that have become structurally weak over their life span. This technique attracted the concerning of researchers during the last two decades. This paper presents a simple uniaxial nonlinear finite element model (UNFEM) able to accurately estimate the load-carrying capacity, different failure modes and the interfacial stresses of reinforced concrete (RC) continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. Results of the proposed finite element (FE) model are verified by comparing them with experimental measurements available in the literature. The agreement between numerical and experimental results is very good. Considering fracture energy of adhesive is necessary to get a realistic load carrying capacity of continuous RC beams strengthened with FRP. This simple UNFEM is able to help design engineers to model their strengthened structures and solve their problems.Keywords: continuous beams, debonding, finite element, fibre reinforced polymer
Procedia PDF Downloads 48317335 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 11417334 Indoor Temperature Estimation with FIR Filter Using R-C Network Model
Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn
Abstract:
In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter
Procedia PDF Downloads 44917333 Design of a Compact Microstrip Patch Antenna for LTE Applications by Applying FDSC Model
Authors: Settapong Malisuwan, Jesada Sivaraks, Peerawat Promkladpanao, Nattakit Suriyakrai, Navneet Madan
Abstract:
In this paper, a compact microstrip patch antenna is designed for mobile LTE applications by applying the frequency-dependent Smith-Chart (FDSC) model. The FDSC model is adopted in this research to reduce the error on the frequency-dependent characteristics. The Ansoft HFSS and various techniques is applied to meet frequency and size requirements. The proposed method within this research is suitable for use in computer-aided microstrip antenna design and RF integrated circuit (RFIC) design.Keywords: frequency-dependent, smith-chart, microstrip, antenna, LTE, CAD
Procedia PDF Downloads 37417332 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 6817331 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 6017330 Social Entrepreneurship as an Innovative Women Empowerment Model against the Poverty in Türkiye
Authors: Rumeysa Terzioglu
Abstract:
Social entrepreneurship is not only a new concept but also an engaging factor of development that utilizes opportunities in economic and social areas for women. Social entrepreneurs have experience in determining and solving social problems with community participation. Social entrepreneurship is a consequence of individual social and economic initiatives contributing to women’s social and economic development against poverty. Women’s empowerment is an essential point for development. Türkiye has been developing an alternative empowerment model for women affected by the national development plan. Social entrepreneurship is an alternative model of social and economic empowerment of women’s status in Türkiye.Keywords: social entrepreneurship, women, women empowerment, development
Procedia PDF Downloads 9717329 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes
Authors: Zhuang Guo
Abstract:
In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty
Procedia PDF Downloads 7717328 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model
Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na
Abstract:
Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.Keywords: elastic network model, Kinesin-1, autoinhibition
Procedia PDF Downloads 45617327 Optimal Evaluation of Weather Risk Insurance for Wheat
Authors: Slim Amami
Abstract:
A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, database, meteorological factors, production model, optimal price
Procedia PDF Downloads 22217326 Conceptual Framework of Continuous Academic Lecturer Model in Islamic Higher Education
Authors: Lailial Muhtifah, Sirtul Marhamah
Abstract:
This article forwards the conceptual framework of continuous academic lecturer model in Islamic higher education (IHE). It is intended to make a contribution to the broader issue of how the concept of excellence can promote adherence to standards in higher education and drive quality enhancement. This model reveals a process and steps to increase performance and achievement of excellence regular lecturer gradually. Studies in this model are very significant to realize excellence academic culture in IHE. Several steps were identified from previous studies through literature study and empirical findings. A qualitative study was conducted at institute. Administrators and lecturers were interviewed, and lecturers learning communities observed to explore institute culture policies, and procedures. The original in this study presents and called Continuous Academic Lecturer Model (CALM) with its components, namely Standard, Quality, and Excellent as the basis for this framework (SQE). Innovation Excellence Framework requires Leaders to Support (LS) lecturers to achieve a excellence culture. So, the model named CALM-SQE+LS. Several components of performance and achievement of CALM-SQE+LS Model should be disseminated and cultivated to all lecturers in university excellence in terms of innovation. The purpose of this article is to define the concept of “CALM-SQE+LS”. Originally, there were three components in the Continuous Academic Lecturer Model i.e. standard, quality, and excellence plus leader support. This study is important to the community as specific cases that may inform educational leaders on mechanisms that may be leveraged to ensure successful implementation of policies and procedures outline of CALM with its components (SQE+LS) in institutional culture and professional leader literature. The findings of this study learn how continuous academic lecturer is part of a group's culture, how it benefits in university. This article blends the available criteria into several sub-component to give new insights towards empowering lecturer the innovation excellence at the IHE. The proposed conceptual framework is also presented.Keywords: continuous academic lecturer model, excellence, quality, standard
Procedia PDF Downloads 20117325 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries
Authors: Oktofa Y. Sudrajad, Didier V. Caillie
Abstract:
Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.Keywords: bank business model, banking competition, Boone indicator, market power
Procedia PDF Downloads 22717324 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School
Authors: Martín Pratto Burgos
Abstract:
The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.Keywords: machine-learning, engineering, university, education, computational models
Procedia PDF Downloads 9917323 Hidden Markov Movement Modelling with Irregular Data
Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith
Abstract:
Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator
Procedia PDF Downloads 24917322 Developing an Audit Quality Model for an Emerging Market
Authors: Bita Mashayekhi, Azadeh Maddahi, Arash Tahriri
Abstract:
The purpose of this paper is developing a model for audit quality, with regard to the contextual and environmental attributes of the audit profession in Iran. For this purpose, using an exploratory approach, and because of the special attributes of the auditing profession in Iran in terms of the legal environment, regulatory and supervisory mechanisms, audit firms size, and etc., we used grounded theory approach as a qualitative research method. Therefore, we got the opinions of the experts in the auditing and capital market areas through unstructured interviews. As a result, the authors revealed the determinants of audit quality, and by using these determinants, developed an Integrated Audit Quality Model, including causal conditions, intervening conditions, context, as well as action strategies related to AQ and their consequences. In this research, audit quality is studied using a systemic approach. According to this approach, the quality of inputs, processes, and outputs of auditing determines the quality of auditing, therefore, the quality of all different parts of this system is considered.Keywords: audit quality, integrated audit quality model, demand for audit service, supply of audit, grounded theory
Procedia PDF Downloads 28517321 Defining Methodology for Multi Model Software Process Improvement Framework
Authors: Aedah Abd Rahman
Abstract:
Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.Keywords: Delphi study, methodology, multi model software process improvement, service management
Procedia PDF Downloads 26017320 Impact of Foreign Aid on Economic Development
Authors: Saeed Anwar
Abstract:
Foreign aid has long been a prominent tool in the pursuit of economic development in recipient countries. This research paper aims to analyze the impact of foreign aid on economic development and explore the effectiveness of aid in promoting sustainable growth, poverty reduction, and improvements in human development indicators. Drawing upon a comprehensive review of existing literature, both theoretical frameworks and empirical evidence are synthesized to provide insights into the complex relationship between foreign aid and economic development. The paper examines various channels through which foreign aid influences economic development, including infrastructure development, education and healthcare investments, technology transfer, and institutional capacity building. It explores the potential positive effects of aid in stimulating economic growth, reducing poverty, and enhancing human capital formation. Additionally, it investigates the potential challenges and limitations associated with aid, such as aid dependency, governance issues, and the potential crowding out of domestic resources. Furthermore, the study assesses the heterogeneity of aid effectiveness across different types of aid modalities, recipient country characteristics, and aid allocation mechanisms. It considers the role of aid conditionality, aid fragmentation, and aid targeting in influencing the effectiveness of aid in promoting economic development. The findings of this research contribute to the ongoing discourse on foreign aid and economic development by providing a comprehensive analysis of the existing literature. The study highlights the importance of context-specific factors, recipient country policies, and aid effectiveness frameworks in determining the impact of foreign aid on economic development outcomes. The insights derived from this research can inform policymakers, donor agencies, and practitioners in designing and implementing effective aid strategies to maximize the positive impact of foreign aid on economic development.Keywords: foreign aid, economic development, sustainable growth, poverty reduction, human development indicators, infrastructure development, education, healthcare, technology transfer, institutional capacity building, aid effectiveness, aid dependency, governance, crowding out, aid conditionality, aid fragmentation, aid targeting, recipient country policies, aid strategies, donor agencies, policymaking
Procedia PDF Downloads 6617319 Quantification of the Variables of the Information Model for the Use of School Terminology from 1884 to 2014 in Dalmatia
Authors: Vinko Vidučić, Tanja Brešan Ančić, Marijana Tomelić Ćurlin
Abstract:
Prior to quantifying the variables of the information model for using school terminology in Croatia's region of Dalmatia from 1884 to 2014, the most relevant model variables had to be determined: historical circumstances, standard of living, education system, linguistic situation, and media. The research findings show that there was no significant transfer of the 1884 school terms into 1949 usage; likewise, the 1949 school terms were not widely used in 2014. On the other hand, the research revealed that the meaning of school terms changed over the decades. The quantification of the variables will serve as the groundwork for creating an information model for using school terminology in Dalmatia from 1884 to 2014 and for defining direct growth rates in further research.Keywords: education system, historical circumstances, linguistic situation, media, school terminology, standard of living
Procedia PDF Downloads 21617318 Soil Stress State under Tractive Tire and Compaction Model
Authors: Prathuang Usaborisut, Dithaporn Thungsotanon
Abstract:
Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.Keywords: draft force, soil compaction model, stress state, tractive tire
Procedia PDF Downloads 35217317 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-Fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.Keywords: fact checking, claim verification, deep learning, natural language processing
Procedia PDF Downloads 6317316 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System
Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami
Abstract:
There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.Keywords: ARMAX, dynamic systems, MGT, prediction, rail degradation
Procedia PDF Downloads 24917315 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 19817314 Weed Out the Bad Seeds: The Impact of Strategic Portfolio Management on Patent Quality
Authors: A. Lefebre, M. Willekens, K. Debackere
Abstract:
Since the 1990s, patent applications have been booming, especially in the field of telecommunications. However, this increase in patent filings has been associated with an (alleged) decrease in patent quality. The plethora of low-quality patents devalues the high-quality ones, thus weakening the incentives for inventors to patent inventions. Despite the rich literature on strategic patenting, previous research has neglected to emphasize the importance of patent portfolio management and its impact on patent quality. In this paper, we compare related patent portfolios vs. nonrelated patents and investigate whether the patent quality and innovativeness differ between the two types. In the analyses, patent quality is proxied by five individual proxies (number of inventors, claims, renewal years, designated states, and grant lag), and these proxies are then aggregated into a quality index. Innovativeness is proxied by two measures: the originality and radicalness index. Results suggest that related patent portfolios have, on average, a lower patent quality compared to nonrelated patents, thus suggesting that firms use them for strategic purposes rather than for the extended protection they could offer. Even upon testing the individual proxies as a dependent variable, we find evidence that related patent portfolios are of lower quality compared to nonrelated patents, although not all results show significant coefficients. Furthermore, these proxies provide evidence of the importance of adding fixed effects to the model. Since prior research has found that these proxies are inherently flawed and never fully capture the concept of patent quality, we have chosen to run the analyses with individual proxies as supplementary analyses; however, we stick with the comprehensive index as our main model. This ensures that the results are not dependent upon one certain proxy but allows for multiple views of the concept. The presence of divisional applications might be linked to the level of innovativeness of the underlying invention. It could be the case that the parent application is so important that firms are going through the administrative burden of filing for divisional applications to ensure the protection of the invention and the preemption of competition. However, it could also be the case that the preempting is a result of divisional applications being used strategically as a backup plan and prolonging strategy, thus negatively impacting the innovation in the portfolio. Upon testing the level of novelty and innovation in the related patent portfolios by means of the originality and radicalness index, we find evidence for a significant negative association with related patent portfolios. The minimum innovation that has been brought on by the patents in the related patent portfolio is lower compared to the minimum innovation that can be found in nonrelated portfolios, providing evidence for the second argument.Keywords: patent portfolio management, patent quality, related patent portfolios, strategic patenting
Procedia PDF Downloads 9417313 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions
Authors: Dahunsi Michael Oluseyi
Abstract:
This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.Keywords: eco-friendly, innovation, sustainability, stakeholders
Procedia PDF Downloads 6417312 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates
Authors: Abeer Amayri, Akif A. Bulgak
Abstract:
Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.Keywords: global supply chains, quality, stochastic programming, supplier selection
Procedia PDF Downloads 46017311 Gender Differences in Morphological Predictors of Running Ability: A Comprehensive Analysis of Male and Female Athletes in Cape Coast Metropolis, Ghana
Authors: Stephen Anim, Emmanuel O. Sarpong, Daniel Apaak
Abstract:
This study investigates the relationship between morphological predictors and running ability, emphasizing gender-specific variations among male and female athletes in Cape Coast Metropolis (CCM), Ghana. The dynamic interplay between an athlete's physique and their performance capabilities holds particular relevance in the realm of sports science, influencing training methodologies and talent identification processes. The research aims to contribute comprehensive insights into the morphological determinants of running proficiency, with a specific focus on the local athletic community in Cape Coast Metropolis. Utilizing a correlational research design, a thorough analysis of morphological features, encompassing 22 morphological features including body weight, 6 measurements related to body length, 7 body girth, and knee diameter, and 7 skinfold measurements against 50m dash, among male and female athletes, was conducted. The study involved 420 athletes both male (N=210) and female (N=210) aged 16-22 from 10 Senior High Schools (SHS) in the Cape Coast Metropolis, providing a representative sample of the local athletic community. The collected data were statistically analysed using means and standard deviation, and stepwise multiple regression to determine how morphological variables contribute to and predict running proficiency outcomes. The investigation revealed that athletes from Senior High Schools (SHS) in Cape Coast Metropolis (CCM) exhibit well-developed physiques and sufficient fitness levels suitable for overall athletic performance, taking into account gender differences. Moreover, the findings suggested that approximately 77% of running ability could be attributed to morphological factors, leading to diverse predictive models for male and female athletes within SHS in CCM, Ghana. Consequently, these formulated equations hold promise for predicting running ability among young athletes, particularly in the context of SHS environments.Keywords: body fat, body girth, body length, morphological features, running ability, senior high school
Procedia PDF Downloads 7117310 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5917309 Flow Characterization in Complex Terrain for Aviation Safety
Authors: Adil Rasheed, Mandar Tabib
Abstract:
The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system
Procedia PDF Downloads 417