Search results for: automated facial recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2674

Search results for: automated facial recognition

844 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 327
843 Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality

Authors: Aida Humaira

Abstract:

Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges.

Keywords: aromatic plants, indonesia, Jamu, traditional medicine

Procedia PDF Downloads 60
842 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems

Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy

Abstract:

Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.

Keywords: shoulder, physiotherapy, exergames, gamification

Procedia PDF Downloads 194
841 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 188
840 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 506
839 Making ‘Space’ For Work-integrated Learning In Singapore: Recognising The Next Wave Of Talents Through Skillsfuture Movement

Authors: Catherine Chua, Kashif Raza

Abstract:

Work-integrated learning (WIL) has been heightened in the last few years across countries. With a specific attention on working adults, the key objective is to integrate work experiences with academic studies so that they will be given more opportunities to advance, gather relevant skills and credentials to enable them to contribute more positively to the labour market. In Singapore, developing talent through WIL aims to develop specialist and enduring skills for the industries. Collaborating with the institutes of higher education in Singapore, the Integrated Work Study Programs (IWSP) seek to harmonize classroom learning with practical work experiences so that adult students can develop skills and knowledge that are needed in the existing and future workplaces. Local higher education institutions will also work closely with industry partners, and design courses that support these students to deepen their skills. Using Critical Discourse Analysis, this paper examines the Singapore government policies in WIL and argues that despite the various supports and interventions provided by the government, it is equally important to create a ‘space’ in the society whereby there is a greater recognition for WIL as a valuable education approach, i.e., “continuous meritocracy”. This is especially so in Singapore where academic excellence and conventional front-loaded approach to education are valued.

Keywords: work-integrated learning, adult learners, continuous meritocracy, skillsfuture singapore

Procedia PDF Downloads 65
838 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)

Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair

Abstract:

This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.

Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity

Procedia PDF Downloads 14
837 Comparing Failure Base Rates on the TOMM-1 and Rey-15 in Romanian and Canadian Disability Applicants

Authors: Iulia Crisan

Abstract:

Objective: The present study investigates the cross-cultural validity of three North-American performance validity indicators (PVTs) by comparing base rates of failure (BRF) in Romanian and Canadian disability applicants. Methods: Three PVTs (Test of Memory Malingering Trial 1 [TOMM-1], Rey Fifteen Item Test free recall [Rey-15 FR], and Rey FR+Recognition [Rey COMB]) were administered to a heterogeneous Romanian clinical sample (N Ro =54) and a similar Canadian sample (N Can = 52). Patients were referred for assessment to determine the severity of their cognitive deficits. Results: We compared the BRF in both samples at various cutoffs. BRF on TOMM-1 at ≤ 43 was similar (Ro = 33.3% vs. Can = 40.4%); at ≤40, Ro = 22.2% vs. Can = 25.0%. Likewise, comparable BRF were observed on Rey-15 FR at ≤ 8 (Ro = 7.4% vs. Can = 11.5%) and ≤ 11 (Ro = 27.8% vs. Can = 23.1%). However, the Romanian sample produced significantly higher failure rates on the Rey COMB at variable cutoffs (p <.05), possibly because Romanian patients were significantly older than the Canadian sample. Conclusion: Our findings offer proof of concept for the cross-cultural validity of the TOMM and Rey-15 FR. At the same time, they serve as a reminder that the generalizability of PVT cutoffs to different populations should not be assumed but verified empirically. Employing the TOMM as a criterion measure for newly developed PVTs is discussed.

Keywords: performance validity indicators, cross-cultural validity, failure base rates, clinical samples, cognitive dysfunction, TOMM-1, Rey-15, Rey COMB

Procedia PDF Downloads 72
836 Fiberoptic Intubation Skills Training Improves Emergency Medicine Resident Comfort Using Modality

Authors: Nicholus M. Warstadt, Andres D. Mallipudi, Oluwadamilola Idowu, Joshua Rodriguez, Madison M. Hunt, Soma Pathak, Laura P. Weber

Abstract:

Endotracheal intubation is a core procedure performed by emergency physicians. This procedure is a high risk, and failure results in substantial morbidity and mortality. Fiberoptic intubation (FOI) is the standard of care in difficult airway protocols, yet no widespread practice exists for training emergency medicine (EM) residents in the technical acquisition of FOI skills. Simulation on mannequins is commonly utilized to teach advanced airway techniques. As part of a program to introduce FOI into our ED, residents received hands-on training in FOI as part of our weekly resident education conference. We hypothesized that prior to the hands-on training, residents had little experience with FOI and were uncomfortable with using fiberoptic as a modality. We further hypothesized that resident comfort with FOI would increase following the training. The education intervention consisted of two hours of focused airway teaching and skills acquisition for PGY 1-4 residents. One hour was dedicated to four case-based learning stations focusing on standard, pediatric, facial trauma, and burn airways. Direct, video, and fiberoptic airway equipment were available to use at the residents’ discretion to intubate mannequins at each station. The second hour involved direct instructor supervision and immediate feedback during deliberate practice for FOI of a mannequin. Prior to the hands-on training, a pre-survey was sent via email to all EM residents at NYU Grossman School of Medicine. The pre-survey asked how many FOI residents have performed in the ED, OR, and on a mannequin. The pre-survey and a post-survey asked residents to rate their comfort with FOI on a 5-point Likert scale ("extremely uncomfortable", "somewhat uncomfortable", "neither comfortable nor uncomfortable", "somewhat comfortable", and "extremely comfortable"). The post-survey was administered on site immediately following the training. A two-sample chi-square test of independence was calculated comparing self-reported resident comfort on the pre- and post-survey (α ≤ 0.05). Thirty-six of a total of 70 residents (51.4%) completed the pre-survey. Of pre-survey respondents, 34 residents (94.4%) had performed 0, 1 resident (2.8%) had performed 1, and 1 resident (2.8%) had performed 2 FOI in the ED. Twenty-five residents (69.4%) had performed 0, 6 residents (16.7%) had performed 1, 2 residents (5.6%) had performed 2, 1 resident (2.8%) had performed 3, and 2 residents (5.6%) had performed 4 FOI in the OR. Seven residents (19.4%) had performed 0, and 16 residents (44.4%) had performed 5 or greater FOI on a mannequin. 29 residents (41.4%) attended the hands-on training, and 27 out of 29 residents (93.1%) completed the post-survey. Self-reported resident comfort with FOI significantly increased in post-survey compared to pre-survey questionnaire responses (p = 0.00034). Twenty-one of 27 residents (77.8%) report being “somewhat comfortable” or “extremely comfortable” with FOI on the post-survey, compared to 9 of 35 residents (25.8%) on the pre-survey. We show that dedicated FOI training is associated with increased learner comfort with such techniques. Further direction includes studying technical competency, skill retention, translation to direct patient care, and optimal frequency and methodology of future FOI education.

Keywords: airway, emergency medicine, fiberoptic intubation, medical simulation, skill acquisition

Procedia PDF Downloads 180
835 Usage of Palm Oil Industrial Wastes as Construction Materials

Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar

Abstract:

Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.

Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates

Procedia PDF Downloads 355
834 Recent Developments in Artificial Intelligence and Information Communications Technology

Authors: Dolapo Adeyemo

Abstract:

Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.

Keywords: ICT, IOT, accessibility solutions, universal design

Procedia PDF Downloads 87
833 Revalidation and Hormonization of Existing IFCC Standardized Hepatic, Cardiac, and Thyroid Function Tests by Precison Optimization and External Quality Assurance Programs

Authors: Junaid Mahmood Alam

Abstract:

Revalidating and harmonizing clinical chemistry analytical principles and optimizing methods through quality control programs and assessments is the preeminent means to attain optimal outcome within the clinical laboratory services. Present study reports revalidation of our existing IFCC regularized analytical methods, particularly hepatic and thyroid function tests, by optimization of precision analyses and processing through external and internal quality assessments and regression determination. Parametric components of hepatic (Bilirubin ALT, γGT, ALP), cardiac (LDH, AST, Trop I) and thyroid/pituitary (T3, T4, TSH, FT3, FT4) function tests were used to validate analytical techniques on automated chemistry and immunological analyzers namely Hitachi 912, Cobas 6000 e601, Cobas c501, Cobas e411 with UV kinetic, colorimetric dry chemistry principles and Electro-Chemiluminescence immunoassay (ECLi) techniques. Process of validation and revalidation was completed with evaluating and assessing the precision analyzed Preci-control data of various instruments plotting against each other with regression analyses R2. Results showed that: Revalidation and optimization of respective parameters that were accredited through CAP, CLSI and NEQAPP assessments depicted 99.0% to 99.8% optimization, in addition to the methodology and instruments used for analyses. Regression R2 analysis of BilT was 0.996, whereas that of ALT, ALP, γGT, LDH, AST, Trop I, T3, T4, TSH, FT3, and FT4 exhibited R2 0.998, 0.997, 0.993, 0.967, 0.970, 0.980, 0.976, 0.996, 0.997, 0.997, and R2 0.990, respectively. This confirmed marked harmonization of analytical methods and instrumentations thus revalidating optimized precision standardization as per IFCC recommended guidelines. It is concluded that practices of revalidating and harmonizing the existing or any new services should be followed by all clinical laboratories, especially those associated with tertiary care hospital. This is will ensure deliverance of standardized, proficiency tested, optimized services for prompt and better patient care that will guarantee maximum patients’ confidence.

Keywords: revalidation, standardized, IFCC, CAP, harmonized

Procedia PDF Downloads 269
832 Emerging Challenges with Collective Bargaining Agreements In Kenya: The Introduction of Salary and Remuneration Commission Through The Constitution of Kenya 2010

Authors: Benard Omogo

Abstract:

The Kenyan Constitution 2010 introduced various commissions to devolve the powers that were previously centralized through the imperial Presidency. One of the commissions that directly determine the levels of remuneration and terms of service of Kenyan workers is the Salary and Remuneration Commission (SRC). Article 230 of the Kenyan Constitution 2010 mandates this commission to regularly review the remuneration and benefits of all the state officers and to advise the national and county governments on the remuneration and benefits of all other public officers. At the same time, article 54 of the Kenyan Labor Relations Act 2007 provides for the recognition of trade unions and collective bargaining agreements. The emerging challenges, therefore, originate from the conflicts of the mandate of the Salary and Remuneration Commission, whose advice is almost adopted as the order and this undermines the outcome of the Collective Bargaining Agreements. This has seen so many trade unions in Kenya being rendered irrelevant. This research paper is therefore going to sample the various trade unions of Kenya to assess the challenges that result from the position of the Salary and Remuneration Commission. We will also extend it by purposively sampling several trade unions in Africa to determine how they handle such challenges. The results from this paper will be useful to the Kenyan Lawmakers and Africa at large and may inform them to consider reviewing the laws and acts that relate to the trade unions for prosperity.

Keywords: salary, remuneration, collective, bargaining, labor laws

Procedia PDF Downloads 178
831 The Application of Patterned Injuries in Reconstruction of Motorcycle Accidents

Authors: Chun-Liang Wu, Kai-Ping Shaw, Cheng-Ping Yu, Wu-Chien Chien, Hsiao-Ting Chen, Shao-Huang Wu

Abstract:

Objective: This study analyzed three criminal judicial cases. We applied the patterned injuries of the rider to demonstrate the facts of each accident, reconstruct the scenes, and pursue the truth. Methods: Case analysis, a method that collects evidence and reasons the results in judicial procedures, then the importance of the pattern of injury as evidence will be compared and evaluated. The patterned injuries analysis method is to compare the collision situation between an object and human body injuries to determine whether the characteristics can reproduce the unique pattern of injury. Result: Case 1: Two motorcycles, A and B, head-on collided; rider A dead, and rider B was accused. During the prosecutor’s investigation, the defendant learned that rider A had an 80 mm open wound on his neck. During the court trial, the defendant requested copies of the case file and found out that rider A had a large contusion on his chest wall, and the cause of death was traumatic hemothorax and abdominal wall contusion. The defendant compared all the evidence at the scene and determined that the injury was obviously not caused by the collision of the body or the motorcycle of rider B but that rider was out of control and injured himself when he crossed the double yellow line. In this case, the defendant was innocent in the High Court judgment in April 2022. Case 2: Motorcycles C and D head-on crashed, and rider C died of massive abdominal bleeding. The prosecutor decided that rider C was driving under the influence (DUI), but rider D was negligent and sued rider D. The defendant requested the copies’ file and found the special phenomenon that the front wheel of motorcycle C was turned left. The defendant’s injuries were a left facial bone fracture, a left femur fracture, and other injuries on the left side. The injuries were of human-vehicle separation and human-vehicle collision, which proved that rider C suddenly turned left when the two motorcycles approached, knocked down motorcycle D, and the defendant flew forward. Case 3: Motorcycle E and F’s rear end collided, the front rider E was sentenced to 3 months, and the rear rider F sued rider E for more than 7 million N.T. The defendant found in the copies’ file that the injury of rider F was the left tibial platform fracture, etc., and then proved that rider F made the collision with his left knee, causing motorcycle E to fall out of control. This evidence was accepted by the court and is still on trial. Conclusion: The application of patterned injuries in the reconstruction of a motorcycle accident could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the policy of preventing traffic accident casualties.

Keywords: judicial evidence, patterned injuries analysis, accident reconstruction, fatal motorcycle injuries

Procedia PDF Downloads 84
830 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-functionalized SWNT Sensor Array

Authors: W. J. Zhang, Y. Q. Du, M. L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancement in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Eight DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, cirrhosis and diabetes. Our tests indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, reproducibility, and repeatability. Furthermore, different molecules can be distinguished through pattern recognition enabled by this sensor array. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or bimolecular detection for the noninvasive diagnostics of diseases and health monitoring.

Keywords: breath analysis, diagnosis, DNA-SWNT sensor array, noninvasive

Procedia PDF Downloads 348
829 Creative Applications for Socially Assistive Robots to Support Mental Health: A Patient-Centered Feasibility Study

Authors: Andreas Kornmaaler Hansen, Carlos Gomez Cubero, Elizabeth Jochum

Abstract:

The use of the arts in therapy and rehabilitation is well established, and there is growing recognition of the value of the arts for improving health and well-being across diverse populations. Combining arts with socially assistive robots is a relatively under-explored research area. This paper presents the results of a feasibility study conducted within an existing arts and health program to scope the possibility of combining visual arts with socially assistive robots to promote mental health and well-being. Using a participatory research design with participant-led perspectives, we present the results of our feasibility study with a collaborative drawing robot among an adult population with mild to severe mental illness. We identify key methodological challenges and advantages of working with participatory and human-centered approaches. Based on the results of three pilot workshops with participants and lay health workers, we outline suggestions for authentic engagement with real stakeholders toward the development of socially assistive robots in community health contexts. Working closely with a patient population at all levels of the research process is key for developing tools and interventions that center patient experience and priorities while minimizing the risks of alienating patients and communities.

Keywords: arts and health, visual art, health promotion, mental health, collaborative robots, creativity, socially assistive robots

Procedia PDF Downloads 64
828 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. Murray Schafer, the author who originally developed this concept, highlights the need for a greater recognition of sound reality, through the selection and differentiation of sounds, contributing to a tuning of the world and to the balance and well-being of humanity. According to some authors sound environment, produced and created in various ways, provides various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference.

Keywords: sound instance, soundscape, sound art, perception, composition

Procedia PDF Downloads 146
827 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 155
826 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
825 Haplotypes of the Human Leukocyte Antigen-G Different HIV-1 Groups from the Netherlands

Authors: A. Alyami, S. Christmas, K. Neeltje, G. Pollakis, B. Paxton, Z. Al-Bayati

Abstract:

The Human leukocyte antigen-G (HLA-G) molecule plays an important role in immunomodulation. To date, 16 untranslated regions (UTR) HLA-G haplotypes have been previously defined by sequenced SNPs in the coding region. From these, UTR-1, UTR-2, UTR-3, UTR-4, UTR-5, UTR-6 and UTR-7 are the most frequent 3’UTR haplotypes at the global level. UTR-1 is associated with higher levels of soluble HLA-G and HLA-G expression, whereas UTR-5 and UTR-7 are linked with low levels of soluble HLA-G and HLA-G expression. Human immunodeficiency virus type 1 (HIV-1) infection results in the progressive loss of immune function in infected individuals. The virus escape mechanism typically includes T lymphocytes and NK cell recognition and lyses by classical HLA-A and B down-regulation, which has been associated with non-classical HLA-G molecule up-regulation, respectively. We evaluated the haplotypes of the HLA-G 3′ untranslated region frequencies observed in three HIV-1 groups from the Netherlands and their susceptibility to develop infection. The three groups are made up of mainly men who have sex with men (MSM), injection drug users (IDU) and a high-risk-seronegative (HRSN) group. DNA samples were amplified with published primers prior sequencing. According to our results, the low expresser frequencies show higher in HRSN compared to other groups. This is indicating that 3’UTR polymorphisms may be identified as potential prognostic biomarkers to determine susceptibility to HIV.

Keywords: Human leukocyte antigen-G (HLA-G) , men who have sex with men (MSM), injection drug users (IDU), high-risk-seronegative (HRSN) group, high-untranslated region (UTR)

Procedia PDF Downloads 153
824 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 111
823 The Relationship Between Multiculturalism, Religion and Ethnic Relations in Nigeria

Authors: Ahmed Usman, Kaduna State University

Abstract:

This paper explores the intricate relationship between multiculturalism, religion, and ethnic relations, aiming to understand how these elements interact within diverse societies. Multiculturalism, as a societal framework, advocates for the coexistence of diverse cultures, encouraging respect and recognition of different cultural identities. Religion often plays a significant role in shaping cultural identity and influencing values, behaviors, and social norms. Ethnic relations, the dynamics between different ethnic groups, are deeply affected by both multicultural policies and religious practices. The researchers investigate how multicultural policies can either foster harmonious ethnic relations or exacerbate tensions, depending on their implementation and societal reception. It also delves into the role of religion in either bridging or widening ethnic divides. Few studies have focused on the phenomenon. This study highlights the conditions under which multiculturalism and religious diversity contribute to social cohesion through qualitative research methodology in Nigeria. The study findings underscore the importance of inclusive policies, interfaith dialogue, and education in promoting positive ethnic relations in multicultural settings. This research contributes to the broader understanding of how multiculturalism and religion intersect to influence ethnic dynamics, offering insights for policymakers and community leaders aiming to cultivate harmonious, inclusive societies.

Keywords: multiculturalism, religion, ethnic relations, Nigeria

Procedia PDF Downloads 29
822 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 518
821 Methodology of Personalizing Interior Spaces in Public Libraries

Authors: Baharak Mousapour

Abstract:

Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.

Keywords: interior design, library, library design, personalization

Procedia PDF Downloads 147
820 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 317
819 Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis

Authors: Aqeela Ashraf, Muhammad Imran, Tahir Yaqub, Muhammad Tayyab, Yung Fu Chang

Abstract:

For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring.

Keywords: multiplex PCR, bacteria, mastitis, milk

Procedia PDF Downloads 330
818 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 128
817 Efficiency of Investments, Financed from EU Funds in Small and Medium Enterprises in Poland

Authors: Jolanta Brodowska-Szewczuk

Abstract:

The article includes the results and conclusions from empirical researches that had been done. The research focuses on the impact of investments made in small and medium-sized enterprises financed from EU funds on the competitiveness of these companies. The researches includes financial results in sales revenue and net income, expenses, and many other new products/services on offer, higher quality products and services, more modern methods of production, innovation in management processes, increase in the number of customers, increase in market share, increase in profitability of production and provision of services. The main conclusions are that, companies with direct investments under this measure shall apply the modern methods of production. The consequence of this is to increase the quality of our products and services. Furthermore, both small and medium-sized enterprises have introduced new products and services. Investments were carried out, thus enabling better work organization in enterprises. Entrepreneurs would guarantee higher quality of service, which would result in better relationships with their customers, what is more, noting the rise in number of clients. More than half of the companies indicated that the investments contributed to the increase in market share. Same thing as for market reach and brand recognition of particular company. An interesting finding is that, investments in small enterprises were more effective than medium-sized enterprises.

Keywords: competitiveness, efficiency, EU funds, small and medium-sized enterprises

Procedia PDF Downloads 384
816 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 134
815 Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor

Authors: Angad S. Kushwaha, Rajeev Kumar, Monika Srivastava, S. K. Srivastava

Abstract:

A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity.

Keywords: biosensor, sensitivity, surface plasmon resonance, transfer matrix method

Procedia PDF Downloads 417