Search results for: λ-levelwise statistical convergence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4568

Search results for: λ-levelwise statistical convergence

2738 Annoyance Caused by Air Pollution: A Comparative Study of Two Industrialized Regions

Authors: Milena M. Melo, Jane M. Santos, Severine Frere, Valderio A. Reisen, Neyval C. Reis Jr., Mariade Fátima S. Leite

Abstract:

Although there had been a many studies that shows the impact of air pollution on physical health, comparatively less was known of human behavioral responses and annoyance impacts. Annoyance caused by air pollution is a public health problem because it can be an ambient stressor causing stress and disease and can affect quality of life. The objective of this work is to evaluate the annoyance caused by air pollution in two different industrialized urban areas, Dunkirk (France) and Vitoria (Brazil). The populations of these cities often report feeling annoyed by dust. Surveys were conducted, and the collected data were analyzed using statistical analyses. The results show that sociodemographic variables, importance of air quality, perceived industrial risk, perceived air pollution and occurrence of health problems play important roles in the perceived annoyance. These results show the existence of a common problem in geographically distant areas and allow stakeholders to develop prevention strategies.

Keywords: air pollution, annoyance, industrial risks, public health, perception of pollution, settled dust

Procedia PDF Downloads 691
2737 The Role and Importance of Genome Sequencing in Prediction of Cancer Risk

Authors: M. Sadeghi, H. Pezeshk, R. Tusserkani, A. Sharifi Zarchi, A. Malekpour, M. Foroughmand, S. Goliaei, M. Totonchi, N. Ansari–Pour

Abstract:

The role and relative importance of intrinsic and extrinsic factors in the development of complex diseases such as cancer still remains a controversial issue. Determining the amount of variation explained by these factors needs experimental data and statistical models. These models are nevertheless based on the occurrence and accumulation of random mutational events during stem cell division, thus rendering cancer development a stochastic outcome. We demonstrate that not only individual genome sequencing is uninformative in determining cancer risk, but also assigning a unique genome sequence to any given individual (healthy or affected) is not meaningful. Current whole-genome sequencing approaches are therefore unlikely to realize the promise of personalized medicine. In conclusion, since genome sequence differs from cell to cell and changes over time, it seems that determining the risk factor of complex diseases based on genome sequence is somewhat unrealistic, and therefore, the resulting data are likely to be inherently uninformative.

Keywords: cancer risk, extrinsic factors, genome sequencing, intrinsic factors

Procedia PDF Downloads 270
2736 Beijing Xicheng District Housing Price Econometric Analysis: “Multi-School Zoning”Policy

Authors: Haoxue Cui, Sirui Zhang, Shanshan Gao, Weiyi Zhang, Lantian Wang, Xuanwen Zheng

Abstract:

The 2020 "multi-school zoning" policy makes students ineligible for direct attendance in their district. To study whether the housing price trend of the school district is affected by the policy, This paper studies housing prices based on the school district division in Xicheng District, Beijing. In this paper, we collected housing prices and the basic situation of communities from "Anjuke", which were divided into two periods of 15 months before and after the 731 policy in the Xicheng District, Beijing. Then we used DID model and time fixed effect to investigate the DIFFERENTIAL statistics, that is, the overall net impact of the policy. The results show that the coefficient is negative at a certain statistical level. It indicates that the housing prices of school districts in the Xicheng district decreased after the "multi-school zoning" policy, which shows that the policy has effectively reduced the housing price of school districts in the Xicheng District and laid a foundation for the "double reduction" policy in 2022.

Keywords: “multi-school zoning”policy, DID, time fixed effect, housing prices

Procedia PDF Downloads 160
2735 Production, Utilization and Marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria

Authors: Nneka M. Chidieber-Mark, Roseline D. Ejike

Abstract:

Non-Timber Forest Products (NTFPs) have been described as all biological materials, other than timber extracted from natural and managed forests for human subsistence and economic activities. This study focused on the production, utilization and marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria. A multistage sampling technique was adopted in the selection of respondents for the study. Data were from primary sources only. Data collected were analysed using descriptive statistical tools as well as Net Income Analysis. Results show that a vast number of plant based and animal based NTFPs exist in the study area. They are harvested and used for multiple purposes. NTFPs are a source of income for the indigenes that depend on it for their livelihood. Unsustainable production and harvesting as well as poor marketing information was among the constraints impeding the growth and development of NTFPs sub-sector in the study area.

Keywords: non-timber forest products, production, utilization, marketing

Procedia PDF Downloads 449
2734 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289
2733 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran

Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton

Abstract:

The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.

Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion

Procedia PDF Downloads 67
2732 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity

Authors: Gizem İntepe, Eti Mizrahi

Abstract:

Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.

Keywords: economic activity, export trade data, import trade data, logistics indices

Procedia PDF Downloads 337
2731 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
2730 Prevalence of Neurological Symptoms Associated with COVID 19

Authors: Syed Hassan Tanvir Ramzi, Ubaidullah Ansari, Sana Manzoor, Namal Ilyas, Nabeel Ahmed

Abstract:

Objective: To better understand the prevalence of neurological symptoms associated with COVID-19, several factors, such as age, gender, and comorbidity, are explored to create a more holistic understanding of the impact of COVID-19. Methods: After meeting inclusion and exclusion criteria, 111 patients admitted to Ibne Sina Hospital were recruited between October 2021 and February 2022. A descriptive statistical analysis was conducted to summarize patients' most often encountered signs and symptoms concerning the above parameters. Results: Out of 111 patients, a significant proportion of symptoms occurred in patients aged 40-60 years, with Dysgeusia being the most widespread (75.5%), followed by Encephalitis (45.9%), GBS (28.8%), Encephalopathy (18.9%), and Ischemic Stroke (6.3%). These were most prevalent in hypertensive individuals (46%) and Diabetes Mellitus (31%). In asthmatic individuals, they are the least prevalent (10.8%). Conclusion: Despite the predominance of neurological manifestations, the present scientific literature cannot demonstrate a definitive causal association between the symptoms and the virus. This study carefully ensures a link between age, gender, and comorbidity, along with the prevalence of neurological manifestations of COVID-19. For a comprehensive treatment plan, a holistic understanding of symptoms is critical.

Keywords: COVID 19, neurological association, GBS, Encephalitis

Procedia PDF Downloads 19
2729 On Hyperbolic Gompertz Growth Model (HGGM)

Authors: S. O. Oyamakin, A. U. Chukwu,

Abstract:

We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz

Procedia PDF Downloads 441
2728 Surface Roughness Modeling in Dry Face Milling of Annealed and Hardened AISI 52100 Steel

Authors: Mohieddine Benghersallah, Mohamed Zakaria Zahaf, Ali Medjber, Idriss Tibakh

Abstract:

The objective of this study is to analyse the effects of cutting parameters on surface roughness in dry face milling using statistical techniques. We studied the effect of the microstructure of AISI 52100 steel on machinability before and after hardening. The machining tests were carried out on a high rigidity vertical milling machine with a 25 mm diameter face milling cutter equipped with micro-grain bicarbide inserts with PVD (Ti, AlN) coating in GC1030 grade. A Taguchi L9 experiment plan is adopted. Analysis of variance (ANOVA) was used to determine the effects of cutting parameters (Vc, fz, ap) on the roughness (Ra) of the machined surface. Regression analysis to assess the machinability of steel presented mathematical models of roughness and the combination of parameters to minimize it. The recorded results show that feed per tooth has the most significant effect on the surface condition for both steel treatment conditions. The best roughnesses were obtained for the hardened AISI 52100 steel.

Keywords: machinability, heat treatment, microstructure, surface roughness, Taguchi method

Procedia PDF Downloads 147
2727 Engineering Method to Measure the Impact Sound Improvement with Floor Coverings

Authors: Katarzyna Baruch, Agata Szelag, Jaroslaw Rubacha, Bartlomiej Chojnacki, Tadeusz Kamisinski

Abstract:

Methodology used to measure the reduction of transmitted impact sound by floor coverings situated on a massive floor is described in ISO 10140-3: 2010. To carry out such tests, the standardised reverberation room separated by a standard floor from the second measuring room are required. The need to have a special laboratory results in high cost and low accessibility of this measurement. The authors propose their own engineering method to measure the impact sound improvement with floor coverings. This method does not require standard rooms and floor. This paper describes the measurement procedure of proposed engineering method. Further, verification tests were performed. Validation of the proposed method was based on the analytical model, Statistical Energy Analysis (SEA) model and empirical measurements. The received results were related to corresponding ones obtained from ISO 10140-3:2010 measurements. The study confirmed the usefulness of the engineering method.

Keywords: building acoustic, impact noise, impact sound insulation, impact sound transmission, reduction of impact sound

Procedia PDF Downloads 324
2726 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 252
2725 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 146
2724 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter

Procedia PDF Downloads 387
2723 Stress and Distress among Physician Trainees: A Wellbeing Workshop

Authors: Carmen Axisa, Louise Nash, Patrick Kelly, Simon Willcock

Abstract:

Introduction: Doctors experience high levels of burnout, stress and psychiatric morbidity. This can affect the health of the doctor and impact patient care. Study Aims: To evaluate the effectiveness of a workshop intervention to promote wellbeing for Australian Physician Trainees. Methods: A workshop was developed in consultation with specialist clinicians to promote health and wellbeing for physician trainees. The workshop objectives were to improve participant understanding about factors affecting their health and wellbeing, to outline strategies on how to improve health and wellbeing and to encourage participants to apply these strategies in their own lives. There was a focus on building resilience and developing long term healthy behaviours as part of the physician trainee daily lifestyle. Trainees had the opportunity to learn practical strategies for stress management, gain insight into their behaviour and take steps to improve their health and wellbeing. The workshop also identified resources and support systems available to trainees. The workshop duration was four and a half hours including a thirty- minute meal break where a catered meal was provided for the trainees. Workshop evaluations were conducted at the end of the workshop. Sixty-seven physician trainees from Adult Medicine and Paediatric training programs in Sydney Australia were randomised into intervention and control groups. The intervention group attended a workshop facilitated by specialist clinicians and the control group did not. Baseline and post intervention measurements were taken for both groups to evaluate the impact and effectiveness of the workshop. Forty-six participants completed all three measurements (69%). Demographic, personal and self-reported data regarding work/life patterns was collected. Outcome measures include Depression Anxiety Stress Scale (DASS), Professional Quality of Life Scale (ProQOL) and Alcohol Use Disorders Identification Test (AUDIT). Results: The workshop was well received by the physician trainees and workshop evaluations showed that the majority of trainees strongly agree or agree that the training was relevant to their needs (96%) and met their expectations (92%). All trainees strongly agree or agree that they would recommend the workshop to their medical colleagues. In comparison to the control group we observed a reduction in alcohol use, depression and burnout but an increase in stress, anxiety and secondary traumatic stress in the intervention group, at the primary endpoint measured at 6 months. However, none of these differences reached statistical significance (p > 0.05). Discussion: Although the study did not reach statistical significance, the workshop may be beneficial to physician trainees. Trainees had the opportunity to share ideas, gain insight into their own behaviour, learn practical strategies for stress management and discuss approach to work, life and self-care. The workshop discussions enabled trainees to share their experiences in a supported environment where they learned that other trainees experienced stress and burnout and they were not alone in needing to acquire successful coping mechanisms and stress management strategies. Conclusion: These findings suggest that physician trainees are a vulnerable group who may benefit from initiatives that promote wellbeing and from a more supportive work environment.

Keywords: doctors' health, physician burnout, physician resilience, wellbeing workshop

Procedia PDF Downloads 191
2722 Influence of Chemical Processing Treatment on Handle Properties of Worsted Suiting Fabric

Authors: Priyanka Lokhande, Ram P. Sawant, Ganesh Kakad, Avinash Kolhatkar

Abstract:

In order to evaluate the influence of chemical processing on low-stress mechanical properties and fabric hand of worsted cloth, eight worsted suiting fabric samples of balance plain and twill weave were studied. The Kawabata KES-FB system has been used for the measurement of low-stress mechanical properties of before and after chemically processed worsted suiting fabrics. Primary hand values and Total Hand Values (THV) of before and after chemically processed worsted suiting fabrics were calculated using the KES-FB test data. Upon statistical analysis, it is observed that chemical processing has considerable influence on the low-stress mechanical properties and thereby on handle properties of worsted suiting fabrics. Improvement in the Total Hand Values (THV) after chemical processing is experienced in most of fabric samples.

Keywords: low stress mechanical properties, plain and twill weave, total hand value (THV), worsted suiting fabric

Procedia PDF Downloads 283
2721 Relationship between Entrepreneurial Orientation and Small and Medium Enterprises Growth in Bauchi Metropolis, Nigeria

Authors: Muhammed Auwal Umar, M. Saleh

Abstract:

The main purpose of this research is to examine the relationship between entrepreneurial orientation (innovativeness, risk-taking propensity, and proactiveness) and SME's growth in Bauchi metropolis. The study is quantitative in nature using a cross-sectional survey. The population of the study was 364 SMEs. Using simple random sampling, 183 questionnaires were personally distributed, out of which 165 (90%) were found valid for the analysis. Kregcie and Morgan (1970) table was used to determine the sample size. Pearson correlation was used to test the hypotheses. The analysis was conducted with the aid of IBM Statistical Package for Social Sciences (SPSS) version 20. The results established that innovativeness, risk-taking propensity, and proactiveness have significant positive relationship with SME's growth. It is therefore recommended that SMEs’ owners/managers should change their attitude by changing their product and mode of operation in line with customer demand, being proactive ahead of other competitors in trying a better way of doing things, and taking calculated risks in anticipation of high return in order for their businesses to survive and grow.

Keywords: SMEs growth, innovativeness, risk-taking propensity, proactiveness

Procedia PDF Downloads 118
2720 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 277
2719 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 550
2718 Public Values in Service Innovation Management: Case Study in Elderly Care in Danish Municipality

Authors: Christian T. Lystbaek

Abstract:

Background: The importance of innovation management has traditionally been ascribed to private production companies, however, there is an increasing interest in public services innovation management. One of the major theoretical challenges arising from this situation is to understand public values justifying public services innovation management. However, there is not single and stable definition of public value in the literature. The research question guiding this paper is: What is the supposed added value operating in the public sphere? Methodology: The study takes an action research strategy. This is highly contextualized methodology, which is enacted within a particular set of social relations into which on expects to integrate the results. As such, this research strategy is particularly well suited for its potential to generate results that can be applied by managers. The aim of action research is to produce proposals with a creative dimension capable of compelling actors to act in a new and pertinent way in relation to the situations they encounter. The context of the study is a workshop on public services innovation within elderly care. The workshop brought together different actors, such as managers, personnel and two groups of users-citizens (elderly clients and their relatives). The process was designed as an extension of the co-construction methods inherent in action research. Scenario methods and focus groups were applied to generate dialogue. The main strength of these techniques is to gather and exploit as much data as possible by exposing the discourse of justification used by the actors to explain or justify their points of view when interacting with others on a given subject. The approach does not directly interrogate the actors on their values, but allows their values to emerge through debate and dialogue. Findings: The public values related to public services innovation management in elderly care were identified in two steps. In the first step, identification of values, values were identified in the discussions. Through continuous analysis of the data, a network of interrelated values was developed. In the second step, tracking group consensus, we then ascertained the degree to which the meaning attributed to the value was common to the participants, classifying the degree of consensus as high, intermediate or low. High consensus corresponds to strong convergence in meaning, intermediate to generally shared meanings between participants, and low to divergences regarding the meaning between participants. Only values with high or intermediate degree of consensus were retained in the analysis. Conclusion: The study shows that the fundamental criterion for justifying public services innovation management is the capacity for actors to enact public values in their work. In the workshop, we identified two categories of public values, intrinsic value and behavioural values, and a list of more specific values.

Keywords: public services innovation management, public value, co-creation, action research

Procedia PDF Downloads 279
2717 Language Factor in the Formation of National and Cultural Identity of Kazakhstan

Authors: Andabayeva Dina, Avakova Raushangul, Kortabayeva Gulzhamal, Rakhymbay Bauyrzhan

Abstract:

This article attempts to give an overview of the language situation and language planning in Kazakhstan. Statistical data is given and excursion to history of languages in Kazakhstan is done. Particular emphasis is placed on the national- cultural component of the Kazakh people, namely the impact of the specificity of the Kazakh language on ethnic identity. Language is one of the basic aspects of national identity. Recently, in the Republic of Kazakhstan purposeful work on language development has been conducted. Optimal solution of language problems is a factor of interethnic relations harmonization, strengthening and consolidation of the peoples and public consent. Development of languages - one of the important directions of the state policy in the Republic of Kazakhstan. The problem of the state language, as part of national (civil) identification play a huge role in the successful integration process of Kazakh society. And quite rightly assume that one of the foundations of a new civic identity is knowing Kazakh language by all citizens of Kazakhstan. The article is an analysis of the language situation in Kazakhstan in close connection with the peculiarities of cultural identity.

Keywords: Kazakhstan, mentality, language policy, ethnolinguistics, language planning, language personality

Procedia PDF Downloads 635
2716 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
2715 The Role of Brand Experience in Customer Satisfaction and Customer Loyalty in Ayandeh Bank Branches in Tehran

Authors: Seyed Reza Agha Seyed Hosseini, Nicolas Hamelin

Abstract:

Many marketing executives are looking for a comprehensive plan for delivering quality services and products that will create a distinct and unforgettable long-term experience for customers in dealing with their brand. Various brand management experts believe that a company looking to enhance its brand experience in the minds of customers should have a plan to increase customer satisfaction as well as customer loyalty. The purpose of this research was to investigate the role of brand experience in customer satisfaction and customer loyalty in Ayandeh Bank branches in Tehran. The study employed a quantitative methodology. For data gathering, a questionnaire was utilised to measure all the variables of the research. The statistical population of the study consisted of all the customers of Ayandeh Bank branches in Tehran, and the study data was gathered from 400 respondents. The findings indicate that brand experience has a direct and meaningful impact on customer satisfaction and customer loyalty, and, furthermore, that customer satisfaction has a direct and significant effect on customer loyalty in the branches of Ayandeh Bank in Tehran.

Keywords: brand experience, customer satisfaction, customer loyalty, bank

Procedia PDF Downloads 259
2714 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility

Authors: Jung-Hsuan Hsu

Abstract:

Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.

Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition

Procedia PDF Downloads 451
2713 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: ferulic acid, enzymatic synthesis, esters, RSM

Procedia PDF Downloads 332
2712 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 148
2711 Investigating the Effect of Mobile Technologies Dimensions upon Creativity of Kermanshah Polymer Petrochemical Company’s Employees

Authors: Ghafor Ahmadi, Nader Bohloli Zynab

Abstract:

Rapid scientific changes are the driving force of upheaval. As new technologies arrive, human’s life changes and information becomes one of the productive sources besides other factors. Optimum application of each technology depends on precise recognition of that technology. Options of mobile phones are constantly developing and evolving. Meanwhile, one of the influential variables for improving the performance and eternity of organizations is creativity. One of the new technologies tied with development and innovation is mobile phone. In this research, the contribution of different dimensions of mobile technologies such as perceived use, perceived enjoyment, continuance intention, confirmation and satisfaction to creativity of employees were investigated. Statistical population included 510 employees of Kermanshah Petrochemical Company. Sample size was defined 217 based on Morgan and Krejcie table. This study is descriptive and data gathering instrument was a questionnaire. Applying SPSS software, linear regression was analyzed. It was found out that all dimensions of mobile technologies except satisfaction affect on creativity of employees.

Keywords: mobile technologies, continuance intention, perceived enjoyment, perceived use, confirmation, satisfaction, creativity

Procedia PDF Downloads 260
2710 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 406
2709 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294