Search results for: statistical machine translation
5320 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study
Authors: Catherine Mary Abou-Zaid
Abstract:
This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education
Procedia PDF Downloads 3155319 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing
Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar
Abstract:
The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic wasteKeywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development
Procedia PDF Downloads 315318 Coastal Environment: Statistical Analysis and Geomorphic Impact on Urban Tourism in Lagos, Portugal
Authors: Magdalena Kuleta
Abstract:
Ponta de Piedade (37º05 ' N, 08º40 ' W) is an area located in the southern part of the Lagos municipality, which include an abrasive and accumulative type of coastline. It is the one of the main touristic destinations of the city. The dynamic development of the attractiveness of the coast, is related with the expansion of the new tourism infrastructure and urban tourism products. These products are: transportation, sightseeing and entertainment in the form of the boat trips. Each type of excursion refers to the different product. This progress brings also many risks associated primarily with landslides cliffs. Natural conditions affecting the coast, create a huge impact on the evolution of urban tourism management. Based on observation, statistical analysis and survey method, author compare the period of six years from 2012 to 2016 in terms of the number of tourists, number and diversity of attractions, most frequently dialled products and infrastructure changes in the city. Carried methodology is based on data belonging to Turismo Portugal and the tourist company Days of Adventure. Main result, is to indicate the essence of the income from coastal tourism into the city development and how does it influence on the marketing and promoting of urban tourism in Lagos.Keywords: geomorphology of the coast in Lagos, market and promotion, quality of tourism service, urban tourism products
Procedia PDF Downloads 3185317 Strength Translation from Spun Yarns to Woven Fabrics
Authors: Anindya Ghosh
Abstract:
Structural parameters, yarn to yarn friction, strength of ring, rotor, air-jet and open-end friction spun yarns and the strength of fabrics made from these yarns are measured. The ratio of fabric strip strength per yarn and corresponding single yarn strength is considered as a measure of quantifying the fabric assistance. Mechanism of yarn failure inside the fabric is different as that of single yarn and the former exhibit more fibre rupture. Fabrics made from weaker yarns have higher ratio of strip strength to single yarn strength than that made from stronger yarns due to larger increase in the percentage of rupture fibres in the former. The fabric assistance also depends to some extent on the degree of gripping of the yarns that is influenced by the yarn to yarn friction, extent of yarn flattening and yarn diameter.Keywords: fabric assistance, fabric strength, yarn diameter, yarn friction, yarn strength
Procedia PDF Downloads 2495316 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 735315 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1505314 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 665313 Improving Road Infrastructure Safety Management Through Statistical Analysis of Road Accident Data. Case Study: Streets in Bucharest
Authors: Dimitriu Corneliu-Ioan, Gheorghe FrațIlă
Abstract:
Romania has one of the highest rates of road deaths among European Union Member States, and there is a concern that the country will not meet its goal of "zero deaths" by 2050. The European Union also aims to halve the number of people seriously injured in road accidents by 2030. Therefore, there is a need to improve road infrastructure safety management in Romania. The aim of this study is to analyze road accident data through statistical methods to assess the current state of road infrastructure safety in Bucharest. The study also aims to identify trends and make forecasts regarding serious road accidents and their consequences. The objective is to provide insights that can help prioritize measures to increase road safety, particularly in urban areas. The research utilizes statistical analysis methods, including exploratory analysis and descriptive statistics. Databases from the Traffic Police and the Romanian Road Authority are analyzed using Excel. Road risks are compared with the main causes of road accidents to identify correlations. The study emphasizes the need for better quality and more diverse collection of road accident data for effective analysis in the field of road infrastructure engineering. The research findings highlight the importance of prioritizing measures to improve road safety in urban areas, where serious accidents and their consequences are more frequent. There is a correlation between the measures ordered by road safety auditors and the main causes of serious accidents in Bucharest. The study also reveals the significant social costs of road accidents, amounting to approximately 3% of GDP, emphasizing the need for collaboration between local and central administrations in allocating resources for road safety. This research contributes to a clearer understanding of the current road infrastructure safety situation in Romania. The findings provide critical insights that can aid decision-makers in allocating resources efficiently and institutionally cooperating to achieve sustainable road safety. The data used for this study are collected from the Traffic Police and the Romanian Road Authority. The data processing involves exploratory analysis and descriptive statistics using the Excel tool. The analysis allows for a better understanding of the factors contributing to the current road safety situation and helps inform managerial decisions to eliminate or reduce road risks. The study addresses the state of road infrastructure safety in Bucharest and analyzes the trends and forecasts regarding serious road accidents and their consequences. It studies the correlation between road safety measures and the main causes of serious accidents. To improve road safety, cooperation between local and central administrations towards joint financial efforts is important. This research highlights the need for statistical data processing methods to substantiate managerial decisions in road infrastructure management. It emphasizes the importance of improving the quality and diversity of road accident data collection. The research findings provide a critical perspective on the current road safety situation in Romania and offer insights to identify appropriate solutions to reduce the number of serious road accidents in the future.Keywords: road death rate, strategic objective, serious road accidents, road safety, statistical analysis
Procedia PDF Downloads 855312 Solving Definition and Relation Problems in English Navigation Terminology
Authors: Ayşe Yurdakul, Eckehard Schnieder
Abstract:
Because of the growing multidisciplinarity and multilinguality, communication problems in different technical fields grows more and more. Therefore, each technical field has its own specific language, terminology which is characterised by the different definition of terms. In addition to definition problems, there are also relation problems between terms. Among these problems of relation, there are the synonymy, antonymy, hypernymy/hyponymy, ambiguity, risk of confusion, and translation problems etc. Thus, the terminology management system iglos of the Institute for Traffic Safety and Automation Engineering of the Technische Universität Braunschweig has the target to solve these problems by a methodological standardisation of term definitions with the aid of the iglos sign model and iglos relation types. The focus of this paper should be on solving definition and relation problems between terms in English navigation terminology.Keywords: iglos, iglos sign model, methodological resolutions, navigation terminology, common language, technical language, positioning, definition problems, relation problems
Procedia PDF Downloads 3335311 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank
Authors: Jalal Haghighat Monfared, Zahra Akbari
Abstract:
Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.Keywords: business intelligence, business intelligence capability, decision making, decision quality
Procedia PDF Downloads 1125310 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 2215309 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility
Authors: Prateek Kishore, T. M. Muruganandam
Abstract:
Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.Keywords: method of characteristics, nozzle, supersonic wind tunnel, variable mach number
Procedia PDF Downloads 2955308 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3665307 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 1615306 Comparing of Compete Motivation between Young and Adult Elite Volleyball Players
Authors: Hassan Hamidi, Fereshteh Zarei
Abstract:
In this study, we compared amount of compete motivation between young and adult volleyball players. Compete motivation has three sections: success achieves score, defeat avoiding score and ability score. For measuring motivation, we used sports attitude inventory of Willis and Layne. The statistical population was elite's men volleyball players in range of young and adult and the study subjects were randomly selected from participant teams in volleyball professional league. In total, 65 adult and 75 young were selected. For collecting the required information, the research inventories were distributed in practice's locations and then were collected after being completed by players. For analyzing the data, we used descriptive statistics including mean, standard deviation and frequency tables. We also used conceptual statistics such as independent sample t-student and Pierson correlation. The results showed a significant difference between young and adult volleyball players in success achieve score and ability score. However, there was no significant difference between young and adult volleyball players in defeat avoiding score and compete motivation. In addition, there was not significant relationship between the length of activities and motivations' sections in adult and young volleyball player. The application of this study to other sports will be discussed.Keywords: compete motivation, volleyball player, statistical analysis, sport psychology
Procedia PDF Downloads 5495305 The Artificial Intelligence Driven Social Work
Authors: Avi Shrivastava
Abstract:
Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.Keywords: social work, artificial intelligence, AI based social work, machine learning, technology
Procedia PDF Downloads 1025304 Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre
Authors: G. E. Okungbowa, H. O. Adams, S. E. Eze
Abstract:
This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students.Keywords: x-ray, dose, examination, chest
Procedia PDF Downloads 1835303 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers
Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe
Abstract:
Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.Keywords: virtual container yard, legal, maritime law, inventory
Procedia PDF Downloads 1655302 Studies on Performance of an Airfoil and Its Simulation
Authors: Rajendra Roul
Abstract:
The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer
Procedia PDF Downloads 4145301 The EFL Mental Lexicon: Connectivity and the Acquisition of Lexical Knowledge Depth
Authors: Khalid Soussi
Abstract:
The study at hand has attempted to describe the acquisition of three EFL lexical knowledge aspects - meaning, synonymy and collocation – across three academic levels: Baccalaureate, second year and fourth year university levels in Morocco. The research also compares the development of the three lexical knowledge aspects between knowledge (reception) and use (production) and attempts to trace their order of acquisition. This has led to the use of three main data collection tasks: translation, acceptability judgment and multiple choices. The study has revealed the following findings. First, L1 and EFL mental lexicons are connected at the lexical knowledge depth. Second, such connection is active whether in language reception or use. Third, the connectivity between L1 and EFL mental lexicons tends to relatively decrease as the academic level of the learners increases. Finally, the research has revealed a significant 'order' of acquisition between the three lexical aspects, though not a very strong one.Keywords: vocabulary acquisition, EFL lexical knowledge, mental lexicon, vocabulary knowledge depth
Procedia PDF Downloads 2835300 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 1165299 School Leaders and Professional Licenses: Measuring the Impact as Perceived by Qatari Schools' Stakeholders
Authors: Hissa Sadiq, Abdullah Abu-Tineh, Fatma Al-Mutawah, Hamda Al-Sulaiti
Abstract:
The purpose of this quantitative study was to measure the difference in levels of satisfaction of students, teachers, and parents in schools run by licensed school leaders comparing with schools run by unlicensed school leaders. Data was gathered from 108 school performance reports as published by Ministry of Education and Higher Education for the year 2015-2016. School leaders in 58 participating schools obtained the professional licenses while school leaders in 56 participating schools have no professional licenses. Percentages, standard deviations, and t-tests were used to analyze the data. Results showed that no statistical differences were found in students’ satisfaction between the two school types. However, there were statistical differences in parents and teachers’ satisfaction in the two school types attributed to obtaining the professional license. Teachers and parents of students in schools run by licensed school leaders satisfied more than schools run by unlicensed school leaders. Finally, many recommendations and implications were discussed and proposed. This paper was made possible by NPRP grant # (NPRP7-1224-5-178) from the Qatar national research fund (a member of Qatar Foundation) to Abdullah M. Abu-Tineh. The statements made herein are solely the responsibility of the authorKeywords: professional licenses, Qatari schools, licensure system, satisfaction
Procedia PDF Downloads 2085298 The Impact of Urethral Plate Width on Surgical Outcomes After Distal Hypospadias Repair in Children
Authors: Andrey Boyko
Abstract:
Nowadays, there is no consensus about the influence of urethral plate (UP) width on the surgical outcomes after distal hypospadias repair. The purpose of the research was to study the association between UP width and surgical outcomes after distal hypospadias repair in children. Materials and methods: The study included 138 patients with distal hypospadias. The mean age at the time of surgery was 4.6 years (6 months – 16 years). We measured UP width at the “midpoint within the glans” and used the HOSE scale to assess postoperative outcomes. The patients were divided into 2 groups: group 1 – the patients (107) with UP < 8mm, group 2 – patients (31) with UP > 8mm. All boys underwent TIP repair. Preincision means UP width after incision means UP width, and the UP ratio was analyzed. Statistical data were obtained using Statistica 10. Results: The findings were preincision mean UP width - 5.4 mm and 9.4 mm; after incision mean UP width - 13mm and 17.5 mm; UP ratio - 0.41 and 0.53 in group 1 and group 2, respectively. Most postoperative complications (fistula, meatal stenosis, and stricture) happened in patients with UP width < 8 mm versus ≥ 8 mm (7/107 versus 2/31, respectively). HOSE results were 15.77 (group 1), 15.65 (group 2). The follow up lasted up to 12 months. Statistical analysis proved the absence of correlation between UP width and postoperative complications. Conclusions: In conclusion, it should be noted that the success of surgical repair mostly depended on the surgical technique.Keywords: children, distal hypospadias, tip repair, urethral plate width
Procedia PDF Downloads 1235297 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 1235296 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2965295 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns
Procedia PDF Downloads 3135294 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 4445293 The Effect of Different Strength Training Methods on Muscle Strength, Body Composition and Factors Affecting Endurance Performance
Authors: Shaher A. I. Shalfawi, Fredrik Hviding, Bjornar Kjellstadli
Abstract:
The main purpose of this study was to measure the effect of two different strength training methods on muscle strength, muscle mass, fat mass and endurance factors. Fourteen physical education students accepted to participate in this study. The participants were then randomly divided into three groups, traditional training group (TTG), cluster training group (CTG) and control group (CG). TTG consisted of 4 participants aged ( ± SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (178.3 ± 11.9 cm). CTG consisted of 5 participants aged (22.2 ± 3.5 years), body mass (81.0 ± 24.0 kg) and height (180.2 ± 12.3 cm). CG consisted of 5 participants aged (22 ± 2.8 years), body mass (77 ± 19 kg) and height (174 ± 6.7 cm). The participants underwent a hypertrophy strength training program twice a week consisting of 4 sets of 10 reps at 70% of one-repetition maximum (1RM), using barbell squat and barbell bench press for 8 weeks. The CTG performed 2 x 5 reps using 10 s recovery in between repetitions and 50 s recovery between sets, while TTG performed 4 sets of 10 reps with 90 s recovery in between sets. Pre- and post-tests were administrated to assess body composition (weight, muscle mass, and fat mass), 1RM (bench press and barbell squat) and a laboratory endurance test (Bruce Protocol). Instruments used to collect the data were Tanita BC-601 scale (Tanita, Illinois, USA), Woodway treadmill (Woodway, Wisconsin, USA) and Vyntus CPX breath-to-breath system (Jaeger, Hoechberg, Germany). Analysis was conducted at all measured variables including time to peak VO2, peak VO2, heart rate (HR) at peak VO2, respiratory exchange ratio (RER) at peak VO2, and number of breaths per minute. The results indicate an increase in 1RM performance after 8 weeks of training. The change in 1RM squat was for the TTG = 30 ± 3.8 kg, CTG = 28.6 ± 8.3 kg and CG = 10.3 ± 13.8 kg. Similarly, the change in 1RM bench press was for the TTG = 9.8 ± 2.8 kg, CTG = 7.4 ± 3.4 kg and CG = 4.4 ± 3.4 kg. The within-group analysis from the oxygen consumption measured during the incremental exercise indicated that the TTG had only a statistical significant increase in their RER from 1.16 ± 0.04 to 1.23 ± 0.05 (P < 0.05). The CTG had a statistical significant improvement in their HR at peak VO2 from 186 ± 24 to 191 ± 12 Beats Per Minute (P < 0.05) and their RER at peak VO2 from 1.11 ± 0.06 to 1.18 ±0.05 (P < 0.05). Finally, the CG had only a statistical significant increase in their RER at peak VO2 from 1.11 ± 0.07 to 1.21 ± 0.05 (P < 0.05). The between-group analysis showed no statistical differences between all groups in all the measured variables from the oxygen consumption test during the incremental exercise including changes in muscle mass, fat mass, and weight (kg). The results indicate a similar effect of hypertrophy strength training irrespective of the methods of the training used on untrained subjects. Because there were no notable changes in body-composition measures, the results suggest that the improvements in performance observed in all groups is most probably due to neuro-muscular adaptation to training.Keywords: hypertrophy strength training, cluster set, Bruce protocol, peak VO2
Procedia PDF Downloads 2505292 Synergy and Complementarity in Technology-Intensive Manufacturing Networks
Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang
Abstract:
This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.Keywords: city system, complementarity, synergy network, higher-order network
Procedia PDF Downloads 435291 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 329