Search results for: non-leguminous plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3503

Search results for: non-leguminous plant

1733 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: adaptive control, active steering, pole placement, vehicle dynamics

Procedia PDF Downloads 468
1732 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines

Authors: Humanyun Zahir, Irtsam Ghazi

Abstract:

This report outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter are presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.

Keywords: magnetic induction, flow meter, Faraday's law, immersion, cathodic protection, anode, cathode, flange, grounding, plant information management system, electrodes

Procedia PDF Downloads 418
1731 Description of a New Fruit Fly Species within Genus Bactrocera Macquart (Diptera: Tephritidae: Dacinae) Detected in Pakistan

Authors: Muhammad Riaz, Muhammad Sarwar

Abstract:

As a result of broad trapping program for the collection of fruit flies fauna of Pakistan, adults or larvae samples of fruit flies were collected from different localities. After sampling, to characterize fruit fly fauna involved, the collected samples were brought to the laboratory for their species identification. In this study, based on extensive literature records, the presence of one fruit fly species Bactrocera abbasi (Diptera: Tephritidae: Dacinae) belonging to genus Bactrocera Macquar was recognized for the first time. This new species is described and illustrated on the basis of morphological characters, supported by data on its ecology and geographic distribution. Information is also given on host plant and location of type specimen, distinguish remarks and diagnosis are as well included.

Keywords: diptera, tephritidae, bactrocera, new species, taxonomy, Pakistan

Procedia PDF Downloads 355
1730 Effects of Different Fungicide In-Crop Treatments on Plant Health Status of Sunflower (Helianthus annuus L.)

Authors: F. Pal-Fam, S. Keszthelyi

Abstract:

Phytosanitary condition of sunflower (Helianthus annuus L.) was endangered by several phytopathogenic agents, mainly microfungi, such as Sclerotinia sclerotiorum, Diaporthe helianthi, Plasmopara halstedtii, Macrophomina phaseolina and so on. There are more agrotechnical and chemical technologies against them, for instance, tolerant hybrids, crop rotations and eventually several in-crop chemical treatments. There are different fungicide treatment methods in sunflower in Hungarian agricultural practice in the quest of obtaining healthy and economic plant products. Besides, there are many choices of useable active ingredients in Hungarian sunflower protection. This study carried out into the examination of the effect of five different fungicide active substances (found on the market) and three different application modes (early; late; and early and late treatments) in a total number of 9 sample plots, 0.1 ha each other. Five successive vegetation periods have been investigated in long term, between 2013 and 2017. The treatments were: 1)untreated control; 2) boscalid and dimoxystrobin late treatment (July); 3) boscalid and dimoxystrobin early treatment (June); 4) picoxystrobin and cyproconazole early treatment; 5) picoxystrobin and cymoxanil and famoxadone early treatment; 6) picoxystrobin and cyproconazole early; cymoxanil and famoxadone late treatments; 7) picoxystrobin and cyproconazole early; picoxystrobin and cymoxanil and famoxadone late treatments; 8) trifloxystrobin and cyproconazole early treatment; and 9) trifloxystrobin and cyproconazole both early and late treatments. Due to the very different yearly weather conditions different phytopathogenic fungi were dominant in the particular years: Diaporthe and Alternaria in 2013; Alternaria and Sclerotinia in 2014 and 2015; Alternaria, Sclerotinia and Diaporthe in 2016; and Alternaria in 2017. As a result of treatments ‘infection frequency’ and ‘infestation rate’ showed a significant decrease compared to the control plot. There were no significant differences between the efficacies of the different fungicide mixes; all were almost the same effective against the phytopathogenic fungi. The most dangerous Sclerotinia infection was practically eliminated in all of the treatments. Among the single treatments, the late treatment realised in July was the less efficient, followed by the early treatments effectuated in June. The most efficient was the double treatments realised in both June and July, resulting 70-80% decrease of the infection frequency, respectively 75-90% decrease of the infestation rate, comparing with the control plot in the particular years. The lowest yield quantity was observed in the control plot, followed by the late single treatment. The yield of the early single treatments was higher, while the double treatments showed the highest yield quantities (18.3-22.5% higher than the control plot in particular years). In total, according to our five years investigation, the most effective application mode is the double in-crop treatment per vegetation time, which is reflected by the yield surplus.

Keywords: fungicides, treatments, phytopathogens, sunflower

Procedia PDF Downloads 141
1729 Chemical and Bioactive Constituents Isolated from the Formosa Zamia furfureace L.

Authors: Chien-Liang Chao, Yun-Sheng Lin

Abstract:

Secondary metabolites are applied in the human life of the Chinese herbal medicine. Many drugs are originally extracted from natural products with combination of pharmaceutical and chemical studies. Crude extract of the leaves from Zamia furfureace L. has been shown to exhibit anticancer activities. The first chemical investigation of this plant was carried out by our group. In this study, four known compounds were isolated from Zamia furfureace L. with three lignins (Sesamin (1), Wodeshiol (2) and Paulownin (3)), and one dipeptide (Aurantiamide acetate (4)). The structures of these compounds were analyzed through the 1D-NMR(1H-NMR,13C-NMR)、2D-NMR(COSY、HMQC、HMBC、NOESY) spectroscopic analysis, and by comparison of variety of physical data (IR, mass spectrometry, ultraviolet, optical rotation). Among them, Aurantiamide acetate (4) exhibited weak cytotoxic activity against human gastric cancer cells.

Keywords: Zamia furfureace L., AGS, sesamin, Aurantiamide acetate, secondary metabolites

Procedia PDF Downloads 486
1728 Energy Efficient Recycling of In-Plant Fines

Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman

Abstract:

Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steel making processes is practiced successfully at several plants but for limited extent. In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

Keywords: iron and steel wastes, recycling, self-reducing briquettes, thermogravimetry

Procedia PDF Downloads 397
1727 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 107
1726 A New Alpha-Amylase Inhibitor Isolated from the Stem Bark of Anthocleista Djalonensis

Authors: Oseyemi O. Olubomehin, Edith O. Ajaiyeoba, Kio A. Abo, Eleonora D. Goosen

Abstract:

Diabetes is a major degenerative disease of global concern and it is the third most lethal disease of mankind, accounting for about 3.2 million deaths annually. Lowering postprandial hyperglycemia by inhibition of carbohydrate hydrolyzing enzyme such as alpha-amylase is one of the therapeutic approaches to treat Type 2 Diabetes. Alpha-amylase inhibitors from plants have been found to be effective in managing postprandial hyperglycemia. In continuation of our anti-diabetic activities of this plant, bioassay-guided fractionation and isolation using 0.1-1.0 mg/mL furnished djalonenol, a monoterpene diol with a significant 53.7% α-amylase inhibition (p<0.001) from the stem bark which was comparable to acarbose which gave a 54.9% inhibition. Spectral characterization using Infra-red, Gas Chromatogrphy-Mass spectrometry, 1D and 2D NMR of the isolated compound was done to elucidate the structure of the compound.

Keywords: alpha-amylase inhibitor, hyperglycemia, postprandial, diabetes

Procedia PDF Downloads 459
1725 The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates

Authors: L. Strauta, S. Muižniece-Brasava

Abstract:

Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (Vigna unguiculata (L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g-1 of moisture - 28±4N, but the volume mass of the samples with additional 9 g100g-1 of water was 263±3 g L-1; all samples were approximately 7±1mm long.

Keywords: cow pea, extrusion–cooking, moisture, size

Procedia PDF Downloads 207
1724 Screening of Potential Sources of Tannin and Its Therapeutic Application

Authors: Mamta Kumari, Shashi Jain

Abstract:

Tannins are a unique category of plant phytochemicals especially in terms of their vast potential health-benefiting properties. Researchers have described the capacity of tannins to enhance glucose uptake and inhibit adipogenesis, thus being potential drugs for the treatment of non-insulin dependent diabetes mellitus. Thus, the present research was conducted to find out tannin content of food products. The percentage of tannin in various analyzed sources ranged from 0.0 to 108.53%; highest in kathaa and lowest in ker and mango bark. The percentage of tannins present in the plants, however, varies. Numerous studies have confirmed that the naturally occurring polyphenols are key factor for the beneficial effects of the herbal medicines. Isolation and identification of active constituents from plants, preparation of standardized dose & dosage regimen can play a significant role in improving the hypoglycaemic action.

Keywords: tannins, diabetes, polyphenols, antioxidant, hypoglycemia

Procedia PDF Downloads 392
1723 Review on Optimization of Drinking Water Treatment Process

Authors: M. Farhaoui, M. Derraz

Abstract:

In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).

Keywords: coagulation process, optimization, turbidity removal, water treatment

Procedia PDF Downloads 423
1722 Environmental Impact of Gas Field Decommissioning

Authors: Muhammad Ahsan

Abstract:

The effective decommissioning of oil and gas fields and related assets is one of the most important challenges facing the oil and gas industry today and in the future. Decommissioning decisions can no longer be avoided by the operators and the industry as a whole. Decommissioning yields no return on investment and carries significant regulatory liabilities. The main objective of this paper is to provide an approach and mechanism for the estimation of emissions associated with decommissioning of Oil and Gas fields. The model uses gate to gate approach and considers field life from development phase up to asset end life. The model incorporates decommissioning processes which includes; well plugging, plant dismantling, wellhead, and pipeline dismantling, cutting and temporary fabrication, new manufacturing from raw material and recycling of metals. The results of the GHG emissions during decommissioning phase are 2.31x10-2 Kg CO2 Eq. per Mcf of the produced natural gas. Well plug and abandonment evolved to be the most GHG emitting activity with 84.7% of total field decommissioning operational emissions.

Keywords: LCA (life cycle analysis), gas field, decommissioning, emissions

Procedia PDF Downloads 186
1721 The Effect of Zeolite and Fertilizers on Yield and Qualitative Characteristics of Cabbage in the Southeast of Kazakhstan

Authors: Tursunay Vassilina, Aigerim Shibikeyeva, Adilet Sakhbek

Abstract:

Research has been carried out to study the influence of modified zeolite fertilizers on the quantitative and qualitative indicators of cabbage variety Nezhenka. The use of zeolite and mineral fertilizers had a positive effect on both the yield and quality indicators of the studied crop. The maximum increase in yield from fertilizers was 16.5 t/ha. Application of both zeolite and fertilizer increased the dry matter, sugar and vitamin C content of cabbage heads. It was established that the cabbage contains an amount of nitrates that is safe for human health. Among vegetable crops, cabbage has both food and feed value. One of the limiting factors in the sale of vegetable crops is the degradation of soil fertility due to depletion of nutrient reserves and erosion processes, and non-compliance with fertilizer application technologies. Natural zeolites are used as additives to mineral fertilizers for application in the field, which makes it possible to reduce their doses to minimal quantities. Zeolites improve the agrophysical and agrochemical properties of the soil and the quality of plant products. The research was carried out in a field experiment, carried out in 3 repetitions, on dark chestnut soil in 2023. The soil (pH = 7.2-7.3) of the experimental plot is dark chestnut, the humus content in the arable layer is 2.15%, gross nitrogen 0.098%, phosphorus, potassium 0.225 and 2.4%, respectively. The object of the study was the late cabbage variety Nezhenka. Scheme for applying fertilizers to cabbage: 1. Control (without fertilizers); 2. Zeolite 2t/ha; 3. N45P45K45; 4. N90P90K90; 5. Zeolite, 2 t/ha + N45P45K45; 6. Zeolite, 2 t/ha + N90P90K90. Yield accounting was carried out on a plot-by-plot basis manually. In plant samples, the following was determined: dry matter content by thermostatic method (at 105ºC); sugar content by Bertrand titration method, nitrate content by 1% diphenylamine solution, vitamin C by titrimetric method with acid solution. According to the results, it was established that the yield of cabbage was high – 42.2 t/ha in the treatment Zeolite, 2 t/ha + N90P90K90. When determining the biochemical composition of white cabbage, it was found that the dry matter content was 9.5% and increased with fertilized treatments. The total sugar content increased slightly with the use of zeolite (5.1%) and modified zeolite fertilizer (5.5%), the vitamin C content ranged from 17.5 to 18.16%, while in the control, it was 17.21%. The amount of nitrates in products also increased with increasing doses of nitrogen fertilizers and decreased with the use of zeolite and modified zeolite fertilizer but did not exceed the maximum permissible concentration. Based on the research conducted, it can be concluded that the application of zeolite and fertilizers leads to a significant increase in yield compared to the unfertilized treatment; contribute to the production of cabbage with good and high quality indicators.

Keywords: cabbage, dry matter, nitrates, total sugar, yield, vitamin C

Procedia PDF Downloads 73
1720 Commissioning, Test and Characterization of Low-Tar Biomass Gasifier for Rural Applications and Small-Scale Plant

Authors: M. Mashiur Rahman, Ulrik Birk Henriksen, Jesper Ahrenfeldt, Maria Puig Arnavat

Abstract:

Using biomass gasification to make producer gas is one of the promising sustainable energy options available for small scale plant and rural applications for power and electricity. Tar content in producer gas is the main problem if it is used directly as a fuel. A low-tar biomass (LTB) gasifier of approximately 30 kW capacity has been developed to solve this. Moving bed gasifier with internal recirculation of pyrolysis gas has been the basic principle of the LTB gasifier. The gasifier focuses on the concept of mixing the pyrolysis gases with gasifying air and burning the mixture in separate combustion chamber. Five tests were carried out with the use of wood pellets and wood chips separately, with moisture content of 9-34%. The LTB gasifier offers excellent opportunities for handling extremely low-tar in the producer gas. The gasifiers producer gas had an extremely low tar content of 21.2 mg/Nm³ (avg.) and an average lower heating value (LHV) of 4.69 MJ/Nm³. Tar content found in different tests in the ranges of 10.6-29.8 mg/Nm³. This low tar content makes the producer gas suitable for direct use in internal combustion engine. Using mass and energy balances, the average gasifier capacity and cold gas efficiency (CGE) observed 23.1 kW and 82.7% for wood chips, and 33.1 kW and 60.5% for wood pellets, respectively. Average heat loss in term of higher heating value (HHV) observed 3.2% of thermal input for wood chips and 1% for wood pellets, where heat loss was found 1% of thermal input in term of enthalpy. Thus, the LTB gasifier performs better compared to typical gasifiers in term of heat loss. Equivalence ratio (ER) in the range of 0.29 to 0.41 gives better performance in terms of heating value and CGE. The specific gas production yields at the above ER range were in the range of 2.1-3.2 Nm³/kg. Heating value and CGE changes proportionally with the producer gas yield. The average gas compositions (H₂-19%, CO-19%, CO₂-10%, CH₄-0.7% and N₂-51%) obtained for wood chips are higher than the typical producer gas composition. Again, the temperature profile of the LTB gasifier observed relatively low temperature compared to typical moving bed gasifier. The average partial oxidation zone temperature of 970°C observed for wood chips. The use of separate combustor in the partial oxidation zone substantially lowers the bed temperature to 750°C. During the test, the engine was started and operated completely with the producer gas. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. Part of the producer gas flow was used for engine operation, and corresponding electrical power was found to be 1.5 kW continuously, and maximum power of 2.5 kW was also observed, while maximum generator capacity is 3 kW. A thermodynamic equilibrium model is good agreement with the experimental results and correctly predicts the equilibrium bed temperature, gas composition, LHV of the producer gas and ER with the experimental data, when the heat loss of 4% of the energy input is considered.

Keywords: biomass gasification, low-tar biomass gasifier, tar elimination, engine, deposits, condensate

Procedia PDF Downloads 114
1719 Antioxydant Activity of Flavonoïd’s Extracts of Rhamnus alaternus L. Leaves of Tessala Mountains (Occidental Algeria)

Authors: Benchiha Walid, Mahroug Samira

Abstract:

Rhamnus alaternus L. is a shrub that belongs to the family of Rhamnaceae. It is a medicinal plant that is largely used in traditional medicine in Algeria. Five flavonoic extracts obtained of Rhamnus alaternus L. leaves. The flavonoids were evaluated by a method that uses aluminum chloride AlCl3 of each extract; the content is estimated at 19.33 (Hexanic. Extract), 18.42 (Chlroformic.extract), 16.75 (Acetate. Extract), 3.9 (Brute. Extract), and 3.02 (Aqueous. Extract) mg Equivalent quercetine/gram of extract (mg QE/ g extract). The antioxidant activity was realized by the antiradical test that was evaluated by using DPHH (2.2 diphenyl-1-1picrylhdrazile), the inhibitory concentration at 50% (CI50) were estimated at 74.78 (Vitamin.C), 143.78 (Catechine), 101.78 (Gallic acid), 205.41 (Tannic acid), 210 (Caffeic acid) µg/ml; 74.16 (Br.extr), 9.98 (Aq.extr), 54.08 (Hèx.extr), 8.64 (Ac.extr), 30.49 (Ch.extr) mg/ml.

Keywords: Rhamnus alaternus L., flavonoids, antioxydant activity, Tessala

Procedia PDF Downloads 533
1718 Component Composition of Biologically Active Substances in Extracts of Some Species from the Family Lamiaceae Lindl.

Authors: Galina N. Parshina, Olga N. Shemshura, Ulzhan S. Mukiyanova, Gulnur M. Beisetbayeva

Abstract:

From a medical point of view some species from the family Lamiaceae Lindl. attract the attention of scientists. Many plant species from this family are used in science and medicine. Some researchers believe that the medicinal properties of these plants are caused by the action on the organism of the individual components (camphor, menthol, thymol, eugenol, phenols, flavonoids, alcohols, and their derivatives) or the entire complex of essential oils. Biologically active substances (BAS), isolated from these medicinal plants can be an effective supplement in the complex treatment of infectious diseases. The substances of the phenolic group such as flavonoids and phenolic acids; and also alkaloids included in the component composition of the plants from the family Lamiaceae Lindl. present the scientific and practical interest for future investigations of their biological activity and development of medicinal products. The research objects are the species from the family Lamiaceae Lindl., cultivated in the North-Kazakhstan region. In this abstract, we present the results of the investigation of polyphenolic complex (flavonoids and phenolic acids) and alkaloids in aqueous and ethanol extracts. Investigation of the qualitative composition of flavonoids in the aqueous extracts showed that the species Monarda Diana contains flavone, Dracocephalum moldavica contains rutin, Ocimum basilicum (purple form) contains both ruin and quercetin. Biochemical analysis revealed that the ethanol extract of Monarda Diana has phenolic acids, similar to protocatechuic and benzoic acids by their chromatographic characteristics. But the aqueous extract contains four phenolic acids, one of which is an analogue of gentisic acid; and the other three are not identified yet. The phenolic acids such as benzoic and gentisic acids identified in ethanol extracts of species Ocimum basilicum (purple form) and Satureja hortensis, correspondingly. But the same phenolic acids did not appear in aqueous extracts. The phenolic acids were not determined neither in the ethanol or aqueous extracts of species Dracocephalum moldavica. The biochemical analysis did not reveal the content of alkaloids in aqueous extracts of investigated plants. However, the alkaloids in the amount of 5-13 components were identified in the ethanolic extracts of plants by the qualitative reactions. The results of analysis with reagent of Dragendorff showed that next amounts of alkaloids were identified in extracts of Monarda Diana (6-7), Satureja hortensis (6), Ocimum basilicum (7-9) and Dracocephalum moldavica (5-6). The reactions with reagent of Van-Urca showed that next amounts of alkaloids were identified in extracts of Monarda Diana (9-12), Satureja hortensis (9-10), two alkaloids of them with Rf6=0,39 and Rf6=0,31 similar to roquefortine), Ocimum basilicum (11) and Dracocephalum moldavica (13, two of them with Rf5=0,34 and Rf5=0,33 by their chromatographic characteristics similar to epikostaklavin).

Keywords: biologically active substances, Lamiaceae, component composition, medicinal plant

Procedia PDF Downloads 503
1717 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.

Keywords: FRAPTRAN, TRACE, LOCA, PWR

Procedia PDF Downloads 512
1716 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 211
1715 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II

Procedia PDF Downloads 364
1714 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 396
1713 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident

Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang

Abstract:

In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.

Keywords: pressurized water reactor (PWR), TRACE, station blackout (SBO), Maanshan

Procedia PDF Downloads 194
1712 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature

Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee

Abstract:

Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.

Keywords: gas turbine blade, tensile test, fatigue life, stress-strain

Procedia PDF Downloads 477
1711 Improvement of Spray Retention on Barley

Authors: Hassina Hafida Boukhalfa, Mohamed Belhamra

Abstract:

Adjuvants contribute to change the types of impact and thus the amount of spray retained by the leaves of the treated plant. We have performed tests of retention on barley plants on BBCH 12 stage and small pieces of barley leaves at the same stage of growth. Spraying was done in three ways: water without adjuvant, water with Break-Thru® S240 and water with Li700®. The three slurries of fluorescein contained in an amount of 0.2 g/l. Fluorescein retained by the leaves in both cases is then measured by a spectrofluoremeter. The retention tests on whole plants show that it is tripled by the first adjuvant and doubled by the second. By cons on small pieces of barley leaves, the amount was increased by the use of surfactants but not to the same scale. This study concluded that the use of adjuvants in spray pesticides may increase the amount of retention as a function of leaf area and the type of adjuvant.

Keywords: Barley, adjuvant, spray retention, fluorometry

Procedia PDF Downloads 302
1710 Evaluation of a Hybrid System for Renewable Energy in a Small Island in Greece

Authors: M. Bertsiou, E. Feloni, E. Baltas

Abstract:

The proper management of the water supply and electricity is the key issue, especially in small islands, where sustainability has been combined with the autonomy and covering of water needs and the fast development in potential sectors of economy. In this research work a hybrid system in Fournoi island (Icaria), a small island of Aegean, has been evaluated in order to produce hydropower and cover water demands, as it can provide solutions to acute problems, such as the water scarcity or the instability of local power grids. The meaning and the utility of hybrid system and the cooperation with a desalination plant has also been considered. This kind of project has not yet been widely applied, so the consideration will give us valuable information about the storage of water and the controlled distribution of the generated clean energy. This process leads to the conclusions about the functioning of the system and the profitability of this project, covering the demand for water and electricity.

Keywords: hybrid system, water, electricity, island

Procedia PDF Downloads 322
1709 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.

Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules

Procedia PDF Downloads 277
1708 Evaluation of Monoterpenes Induction in Ugni molinae Ecotypes Subjected to a Red Grape Caterpillar (Lepidoptera: Arctiidae) Herbivory

Authors: Manuel Chacon-Fuentes, Leonardo Bardehle, Marcelo Lizama, Claudio Reyes, Andres Quiroz

Abstract:

The insect-plant interaction is a complex process in which the plant is able to release chemical signaling that modifies the behavior of insects. Insect herbivory can trigger mechanisms that allow the increase in the production of secondary metabolites that allow coping against the herbivores. Monoterpenes are a kind of secondary metabolites involved in direct defense acting as repellents of herbivorous or even in indirect defense acting as attractants for insect predators. In addition, an increase of the monoterpenes concentration is an effect commonly associated with the herbivory. Hence, plants subjected to damage by herbivory increase the monoterpenes production in comparison to plants without herbivory. In this framework, co-evolutionary aspects play a fundamental role in the adaptation of the herbivorous to their host and in the counter-adaptive strategies of the plants to avoid the herbivorous. In this context, Ugni molinae 'murtilla' is a native shrub from Chile characterized by its antioxidant activity mainly related to the phenolic compounds presents in its fruits. The larval stage of the red grape caterpillar Chilesia rudis Butler (Lepidoptera: Arctiidae) has been reported as an important defoliator of U. molinae. This insect is native from Chile and probably has been involved in a co-evolutionary process with murtilla. Therefore, we hypothesized that herbivory by the red grape caterpillar increases the emission of monoterpenes in Ugni molinae. Ecotypes 19-1 and 22-1 of murtilla were established and maintained at 25° C in the Laboratorio de Química Ecológica at Universidad de La Frontera. Red grape caterpillars of ⁓40 mm were collected near to Temuco (Chile) from grasses, and they were deprived of food for 24 h before performing the assays. Ten caterpillars were placed on the foliage of the ecotypes 19-1 and 22-1 and allowed to feed during 48 h. After this time, caterpillars were removed from the ecotypes and monoterpenes were collected. A glass chamber was used to enclose the ecotypes and a Porapak-Q column was used to trap the monoterpenes. After 24 h of capturing, columns were desorbed with hexane. Then, samples were injected in a gas chromatograph coupled to mass spectrometer and monoterpenes were determined according to the NIST library. All the experiments were performed in triplicate. Results showed that α-pinene, β-phellandrene, limonene, and 1,8 cineole were the main monoterpenes released by murtilla ecotypes. For the ecotype 19-1, the abundance of α-pinene was significantly higher in plants subjected to herbivory (100%) in relation to control plants (54.58%). Moreover, β-phellandrene and 1,8 cineole were observed only in control plants. For ecotype 22-1, there was no significant difference in monoterpenes abundance. In conclusion, the results suggest a trade-off of β-phellandrene and 1,8 cineole in response to herbivory damage by red grape caterpillar generating an increase in α-pinene abundance.

Keywords: Chilesia rudis, gas chromatography, monoterpenes, Ugni molinae

Procedia PDF Downloads 152
1707 Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Authors: K. Jarmkom, P. Eakwaropas, W. Khobjai, S. Techaeoi

Abstract:

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Keywords: GC-MS analysis, essential oils, stability, Pang-Rum

Procedia PDF Downloads 272
1706 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars

Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras

Abstract:

Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.

Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid

Procedia PDF Downloads 408
1705 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 702
1704 Role of Discrete Event Simulation in the Assessment and Selection of the Potential Reconfigurable Manufacturing Solutions

Authors: Mohsin Raza, Arne Bilberg, Thomas Ditlev Brunø, Ann-Louise Andersen, Filip SKärin

Abstract:

Shifting from a dedicated or flexible manufacturing system to a reconfigurable manufacturing system (RMS) requires a significant amount of time, money, and effort. Therefore, it is vital to verify beforehand that the potential reconfigurable solution will be able to achieve the organizational objectives. Discrete event simulation offers the opportunity of assessing several reconfigurable alternatives against the set objectives. This study signifies the importance of using discrete-event simulation as a tool to verify several reconfiguration options. Two different industrial cases have been presented in the study to elaborate on the role of discrete event simulation in the implementation methodology of RMSs. The study concluded that discrete event simulation is one of the important tools to consider in the RMS implementation methodology.

Keywords: reconfigurable manufacturing system, discrete event simulation, Tecnomatix plant simulation, RMS

Procedia PDF Downloads 124