Search results for: learning outcomes framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14050

Search results for: learning outcomes framework

12280 The Need for a Consistent Regulatory Framework for CRISPR Gene-Editing in the European Union

Authors: Andrew Thayer, Courtney Rondeau, Paraskevi Papadopoulou

Abstract:

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-editing technologies have generated considerable discussion about the applications and ethics of their use. However, no consistent guidelines for using CRISPR technologies have been developed -nor common legislation passed related to gene editing, especially as it is connected to genetically modified organisms (GMOs) in the European Union. The recent announcement that the first babies with CRISPR-edited genes were born, along with new studies exploring CRISPR’s applications in treating thalassemia, sickle-cell anemia, cancer, and certain forms of blindness, have demonstrated that the technology is developing faster than the policies needed to control it. Therefore, it can be seen that a reasonable and coherent regulatory framework for the use of CRISPR in human somatic and germline cells is necessary to ensure the ethical use of the technology in future years. The European Union serves as a unique region of interconnected countries without a standard set of regulations or legislation for CRISPR gene-editing. We posit that the EU would serve as a suitable model in comparing the legislations of its affiliated countries in order to understand the practicality and effectiveness of adopting majority-approved practices. Additionally, we present a proposed set of guidelines which could serve as a basis in developing a consistent regulatory framework for the EU countries to implement but also act as a good example for other countries to adhere to. Finally, an additional, multidimensional framework of smart solutions is proposed with which all stakeholders are engaged to become better-informed citizens.

Keywords: CRISPR, ethics, regulatory framework, European legislation

Procedia PDF Downloads 135
12279 The Use of Ontology Framework for Automation Digital Forensics Investigation

Authors: Ahmad Luthfi

Abstract:

One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.

Keywords: ontology, framework, automation, forensics

Procedia PDF Downloads 342
12278 Fostering Resilience in Early Adolescents: A Canadian Evaluation of the HEROES Program

Authors: Patricia L. Fontanilla, David Nordstokke

Abstract:

Introduction: Today’s children and youth face increasing social and behavioural challenges, leading to delays in social development and greater mental health needs. Early adolescents (aged 9 to 14) are experiencing a rise in mental health symptoms and diagnoses. This study examines the impact of HEROES, a social-emotional learning (SEL) program, on resilience and academic outcomes in early adolescents. The HEROES program is designed to enhance resilience the ability to adapt and thrive in the face of adversity, equipping youth to navigate developmental transitions and challenges. This study’s objective was to evaluate the program’s long-term effectiveness by measuring changes in resilience and academic resilience across 10 months. Methodology: This study collected data from 21 middle school students (grades 7 to 9) in a rural Canadian school. Quantitative data were gathered at four intervals: pre-intervention, post-intervention, and at 2- and 4-month follow-ups. Data were analyzed with linear mixed models (LMM). Results: Findings showed statistically significant increases in academic resilience over time and significant increases in resilience from pre-intervention to 2 and 4 months later. Limitations included a small sample size, which may affect generalizability. Conclusion: The HEROES program demonstrates promise in increasing resilience and academic resilience among early adolescents through SEL skill development.

Keywords: academic resilience, early adolescence, resilience, SEL, social-emotional learning program

Procedia PDF Downloads 11
12277 Are Some Languages Harder to Learn and Teach Than Others?

Authors: David S. Rosenstein

Abstract:

The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.

Keywords: learning different languages, language learning difficulties, faulty language expectations

Procedia PDF Downloads 533
12276 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 63
12275 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
12274 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 534
12273 The Effects of Self-Graphing on the Reading Fluency of an Elementary Student with Learning Disabilities

Authors: Matthias Grünke

Abstract:

In this single-case study, we evaluated the effects of a self-graphing intervention to help students improve their reading fluency. Our participant was a 10-year-old girl with a suspected learning disability in reading. We applied an ABAB reversal design to test the efficacy of our approach. The dependent measure was the number of correctly read words from a children’s book within five minutes. Our participant recorded her daily performance using a simple line diagram. Results indicate that her reading rate improved simultaneously with the intervention and dropped as soon as the treatment was suspended. The findings give reasons for optimism that our simple strategy can be a very effective tool in supporting students with learning disabilities to boost their reading fluency.

Keywords: single-case study, learning disabilities, elementary education, reading problems, reading fluency

Procedia PDF Downloads 111
12272 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 161
12271 Fostering Creativity in Education Exploring Leadership Perspectives on Systemic Barriers to Innovative Pedagogy

Authors: David Crighton, Kelly Smith

Abstract:

The ability to adopt creative pedagogical approaches is increasingly vital in today’s educational landscape. This study examines the institutional barriers that hinder educators, in the UK, from embracing such innovation, focusing specifically on the experiences and perspectives of educational leaders. Current literature primarily focuses on the challenges that academics and teachers encounter, particularly highlighting how management culture and audit processes negatively affect their ability to be creative in classrooms and lecture theatres. However, this focus leaves a gap in understanding management perspectives, which is crucial for providing a more holistic insight into the challenges encountered in educational settings. To explore this gap, we are conducting semi-structured interviews with senior leaders across various educational contexts, including universities, schools, and further education colleges. This qualitative methodology, combined with thematic analysis, aims to uncover the managerial, financial, and administrative pressures these leaders face in fostering creativity in teaching and supporting professional learning opportunities. Preliminary insights indicate that educational leaders face significant barriers, such as institutional policies, resource limitations, and external performance indicators. These challenges create a restrictive environment that stifles educators' creativity and innovation. Addressing these barriers is essential for empowering staff to adopt more creative pedagogical approaches, ultimately enhancing student engagement and learning outcomes. By alleviating these constraints, educational leaders can cultivate a culture that fosters creativity and flexibility in the classroom. These insights will inform practical recommendations to support institutional change and enhance professional learning opportunities, contributing to a more dynamic educational environment. In conclusion, this study offers a timely exploration of how leadership can influence the pedagogical landscape in a rapidly evolving educational context. The research seeks to highlight the crucial role that educational leaders play in shaping a culture of creativity and adaptability, ensuring that institutions are better equipped to respond to the challenges of contemporary education.

Keywords: educational leadership, professional learning, creative pedagogy, marketisation

Procedia PDF Downloads 13
12270 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: e-learning, platform, authoring tool, science teaching, educational sciences

Procedia PDF Downloads 397
12269 Transfigurative Changes of Governmental Responsibility

Authors: Ákos Cserny

Abstract:

The unequivocal increase of the area of operation of the executive power can happen with the appearance of new areas to be influenced and its integration in the power, or at the expense of the scopes of other organs with public authority. The extension of the executive can only be accepted within the framework of the rule of law if parallel with this process we get constitutional guarantees that the exercise of power is kept within constitutional framework. Failure to do so, however, may result in the lack, deficit of democracy and democratic sense, and may cause an overwhelming dominance of the executive power. Therefore, the aim of this paper is to present executive power and responsibility in the context of different dimensions.

Keywords: confidence, constitution, executive power, liabiliy, parliamentarism

Procedia PDF Downloads 402
12268 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268
12267 Effectiveness of Active Learning in Social Science Courses at Japanese Universities

Authors: Kumiko Inagaki

Abstract:

In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture.  The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.

Keywords: active learning, Japanese university, teaching method, university education

Procedia PDF Downloads 195
12266 Efficacy of Computer Mediated Power Point Presentations on Students' Learning Outcomes in Basic Science in Oyo State, Nigeria

Authors: Sunmaila Oyetunji Raimi, Olufemi Akinloye Bolaji, Abiodun Ezekiel Adesina

Abstract:

The lingering poor performance of students in basic science spells doom for a vibrant scientific and technological development which pivoted the economic, social and physical upliftment of any nation. This calls for identifying appropriate strategies for imparting basic science knowledge and attitudes to the teaming youths in secondary schools. This study, therefore, determined the impact of computer mediated power point presentations on students’ achievement in basic science in Oyo State, Nigeria. A pre-test, posttest, control group quazi-experimental design adopted for the study. Two hundred and five junior secondary two students selected using stratified random sampling technique participated in the study. Three research questions and three hypotheses guided the study. Two evaluative instruments – Students’ Basic Science Attitudes Scale (SBSAS, r = 0.91); Students’ Knowledge of Basic Science Test (SKBST, r = 0.82) were used for data collection. Descriptive statistics of mean, standard deviation and inferential statistics of ANCOVA, scheffe post-hoc test were used to analyse the data. The results indicated significant main effect of treatment on students cognitive (F(1,200)= 171.680; p < 0.05) and attitudinal (F(1,200)= 34.466; p < 0.05) achievement in Basic science with the experimental group having higher mean gain than the control group. Gender has significant main effect (F(1,200)= 23.382; p < 0.05) on students cognitive outcomes but not significant for attitudinal achievement in Basic science. The study therefore recommended among others that computer mediated power point presentations should be incorporated into curriculum methodology of Basic science in secondary schools.

Keywords: basic science, computer mediated power point presentations, gender, students’ achievement

Procedia PDF Downloads 429
12265 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 117
12264 Implementation of Real-World Learning Experiences in Teaching Courses of Medical Microbiology and Dietetics for Health Science Students

Authors: Miriam I. Jimenez-Perez, Mariana C. Orellana-Haro, Carolina Guzman-Brambila

Abstract:

As part of microbiology and dietetics courses, students of medicine and nutrition analyze the main pathogenic microorganisms and perform dietary analyzes. The course of microbiology describes in a general way the main pathogens including bacteria, viruses, fungi, and parasites, as well as their interaction with the human species. We hypothesize that lack of practical application of the course causes the students not to find the value and the clinical application of it when in reality it is a matter of great importance for healthcare in our country. The courses of the medical microbiology and dietetics are mostly theoretical and only a few hours of laboratory practices. Therefore, it is necessary the incorporation of new innovative techniques that involve more practices and community fieldwork, real cases analysis and real-life situations. The purpose of this intervention was to incorporate real-world learning experiences in the instruction of medical microbiology and dietetics courses, in order to improve the learning process, understanding and the application in the field. During a period of 6 months, medicine and nutrition students worked in a community of urban poverty. We worked with 90 children between 4 and 6 years of age from low-income families with no access to medical services, to give an infectious diagnosis related to nutritional status in these children. We expect that this intervention would give a different kind of context to medical microbiology and dietetics students improving their learning process, applying their knowledge and laboratory practices to help a needed community. First, students learned basic skills in microbiology diagnosis test during laboratory sessions. Once, students acquired abilities to make biochemical probes and handle biological samples, they went to the community and took stool samples from children (with the corresponding informed consent). Students processed the samples in the laboratory, searching for enteropathogenic microorganism with RapID™ ONE system (Thermo Scientific™) and parasites using Willis and Malloy modified technique. Finally, they compared the results with the nutritional status of the children, previously measured by anthropometric indicators. The anthropometric results were interpreted by the OMS Anthro software (WHO, 2011). The microbiological result was interpreted by ERIC® Electronic RapID™ Code Compendium software and validated by a physician. The results were analyses of infectious outcomes and nutritional status. Related to fieldwork community learning experiences, our students improved their knowledge in microbiology and were capable of applying this knowledge in a real-life situation. They found this kind of learning useful when they translate theory to a real-life situation. For most of our students, this is their first contact as health caregivers with real population, and this contact is very important to help them understand the reality of many people in Mexico. In conclusion, real-world or fieldwork learning experiences empower our students to have a real and better understanding of how they can apply their knowledge in microbiology and dietetics and help a much- needed population, this is the kind of reality that many people live in our country.

Keywords: real-world learning experiences, medical microbiology, dietetics, nutritional status, infectious status.

Procedia PDF Downloads 132
12263 Facilitators and Barriers of Family Resilience in Cancer Patients Based on the Theoretical Domains Framework: An Integrative Review

Authors: Jiang Yuqi

Abstract:

Aims: The aim is to analyze the facilitators and barriers of family resilience in cancer patients based on the theoretical domain framework, provide a basis for intervention in the family resilience of cancer patients, and identify the progress and enlightenment of existing intervention projects. Methods: NVivo software was used to code the influencing factors using the framework of 14 theoretical domains as primary nodes; secondary nodes were then refined using thematic analysis, and specific influencing factors were aggregated and analyzed for evaluator reliability. Data sources: PubMed, Embase, CINAHL, Web of Science, Cochrane Library, MEDLINE, CNKI, and Wanfang (search dates: from construction to November 2023). Results: A total of 35 papers were included, with 142 coding points across 14 theoretical domains and 38 secondary nodes. The three most relevant theoretical domains are social influences (norms), the environment and resources, and emotions (mood). The factors with the greatest impact were family support, mood, confidence and beliefs, external support, quality of life, economic circumstances, family adaptation, coping styles with illness, and management. Conclusion: The factors influencing family resilience in cancer patients cover most of the theoretical domains in the Theoretical Domains Framework and are cross-cutting, multi-sourced, and complex. Further in-depth exploration of the key factors influencing family resilience is necessary to provide a basis for intervention research.

Keywords: cancer, survivors, family resilience, theoretical domains framework, literature review

Procedia PDF Downloads 47
12262 Mentor and Mentee Based Learning

Authors: Erhan Eroğlu

Abstract:

This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.

Keywords: learning, mentor, mentee, training

Procedia PDF Downloads 228
12261 Pregnancy Outcomes Affected by COVID-19, Large Obstetrics and Gynecology Cohort in Southern Vietnam

Authors: Le-Quyen Nguyen, Hoang Van Bui, Ngoc Thi Tran, Binh Thanh Le, Linus Olson, Thanh Quang Le

Abstract:

Objective: We compared of outcomes between infected and non-infected COVID-19 pregnant at the largest obstetrics and gynecology hospital in southern Vietnam. Materials and Methods: A retrospective study was conducted at gestational age (GA) 28-42 weeks, who terminated pregnancy and had a real-time PCR test for SARS-CoV-2 at Tu Du Hospital. Demographic, clinical, laboratory, and epidemiological data were collected from hospital electronic-medical-records. Diagnosis and screening of SARS-CoV-2 used Real-time-PCR. Results: From July to October 2021, 9,246 pregnant with GA of 28-42 weeks were delivered, including 664 infected with COVID-19 and 8,582 non-infected. The cesarean section (CS) rates of pregnant with and without COVID-19 were 47.3% and 46.0%. At GA 32-34 weeks, the rate of CS with COVID-19 was 5.07 times higher than without. The rate of postpartum hemorrhage (PPH) and the Apgar score between these two groups were similar. The mortality rate of infected pregnants was 2.26%. Conclusions: COVID-19 infection increased the CS rate in the group of preterm pregnancies from 32 to less than 34 weeks. COVID-19 did not increase the risk of complications related to adverse pregnancy outcomes such as PPH, Apgar scores, the ratio of stillbirths, deaths due to malformation, and fetal deaths in labor.

Keywords: COVID-19, SARS-CoV-2, pregnancy, outcome, vietnam

Procedia PDF Downloads 137
12260 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 255
12259 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies

Procedia PDF Downloads 354
12258 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 92
12257 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
12256 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 125
12255 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 198
12254 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model

Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira

Abstract:

This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.

Keywords: neurology, intracranial pressure, medical education, simulation

Procedia PDF Downloads 172
12253 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: cell phone, digital micrographies, learning of sciences, teaching practices

Procedia PDF Downloads 596
12252 Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering.

Keywords: system modeling, modeling language, modeling requirements, framework

Procedia PDF Downloads 532
12251 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment

Authors: Ramorola Mmankoko Ziphorah

Abstract:

Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.

Keywords: open distance learning, transactional distance, tutor, videoconference

Procedia PDF Downloads 129