Search results for: ground truth data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26685

Search results for: ground truth data

24915 A Mainstream Aesthetic for African American Female Filmmakers

Authors: Tracy L. F. Worley

Abstract:

This presentation explores the environment that has limited leadership opportunities for Black women in cinema and advocates for autonomy among Black women filmmakers that is facilitated by strong internal and external networks and cooperative opportunities. Early images of African Americans in motion pictures were often conceptualized from the viewpoint of a White male director and depicted by White actors. The black film evolved in opposition to this context, leading to a Black film aesthetic. The oppositional context created in response to racist, misogynistic, and sexist representations in motion pictures sets the tone for female filmmakers of every hue – but especially for African American women. For them, the context of a male gaze, and for all intents and purposes, a White male gaze, forces them to create their own aesthetic. Theoretically, men and women, filmmakers and spectators have different perspectives across race, ethnicity, and gender. Two feminist theorists, bell hooks and Mary Ann Doane, suggest that female filmmakers are perceived as disparate from male filmmakers and that women, in general, are defined by what men see. Mary Ann Doane, a White feminist film theorist, has focused extensively on female spectatorship and women (White) in general as the object of the male gaze. Her discussion of the female body, male perception of it, and feminism in the motion picture industry support the suggestion that comprehending the organization and composition of Hollywood is critical to understanding women’s roles in the industry. Although much of her research addresses the silent film era and women’s roles then, Doane suggests that across cinematic periods, the theory assigned to “cinematic apparatus” is formulated within a context of sexuality. Men and women are viewed and treated differently in cinema (in front of and behind the camera), with women’s attractiveness and allure photographed specifically for the benefit of the “spectatorial desire” of the male gaze. Bell Hooks, an African American feminist writer and theorist with more than 30 published books and articles on race, gender, class, and culture in feminism and education, suggests that women can overcome the male gaze by using their “oppositional gaze” to transform reality and establish their own truth. She addresses gender within the context of race by acknowledging the realities faced by African American women and the fact that the feminist movement was never intended to include Black women. A grounded theory study led to the development of a leadership theory that explains why African American women are disproportionately represented in a mainstream motion picture leadership. The study helped to reveal the barriers to entry and illuminated potential strategies that African American female motion picture directors might pursue to reduce this inequity. Using semi-structured interviews as the primary means for data collection, the lived experiences of African American female directors and organizational leadership’s perceived role in the perpetuation of negative female imagery in major motion pictures led to the identification of support strategies for African American female motion picture directors that counter social stereotyping and validate the need for social networking in the mainstream.

Keywords: African American, cinema, directors, filmmaking, leadership, women

Procedia PDF Downloads 66
24914 Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil

Authors: Ali H. Mahfouz, Gao Ming-Jun, Mohamad Sharif

Abstract:

Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas.

Keywords: super soft foundation, dredger fill, vacuum preloading, foundation treatment, construction technology

Procedia PDF Downloads 609
24913 Improving Utilization of Sugarcane by Replacing Ordinary Propagation Material with Small Chips of Sugarcane Planted in Paper Pots

Authors: C. Garcia, C. Andreasen

Abstract:

Sugarcane is an important resource for bioenergy. Fields are usually established by using 15-20 cm pieces of sugarcane stalks as propagation material. An alternative method is to use small chips with nodes from sugarcane stalks. Plants from nodes are often established in plastic pots, but plastic pots could be replaced with biodegradable paper pots. This would be a more sustainable solution, reducing labor costs and avoiding pollution with plastic. We compared the establishment of plants from nodes taken from three different part of the sugarcane plant. The nodes were planted in plastic and paper pots. There was no significant difference between plants established in the two pot types. Nodes from different part of the stalk had different sprouting capacity. Nodes from the top parts sprouted significantly better than nodes taken from the middle or nodes taken closed to the ground in two experiments. Nodes with a length of 3 cm performed better than nodes with a length of 2 cm.

Keywords: nodes, paper pots, propagation material, sugarcane

Procedia PDF Downloads 210
24912 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
24911 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
24910 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
24909 Estimating the Impact of Appliance Energy Efficiency Improvement on Residential Energy Demand in Tema City, Ghana

Authors: Marriette Sakah, Samuel Gyamfi, Morkporkpor Delight Sedzro, Christoph Kuhn

Abstract:

Ghana is experiencing rapid economic development and its cities command an increasingly dominant role as centers of both production and consumption. Cities run on energy and are extremely vulnerable to energy scarcity, energy price escalations and health impacts of very poor air quality. The overriding concern in Ghana and other West African states is bridging the gap between energy demand and supply. Energy efficiency presents a cost-effective solution for supply challenges by enabling more coverage with current power supply levels and reducing the need for investment in additional generation capacity and grid infrastructure. In Ghana, major issues for energy policy formulation in residential applications include lack of disaggregated electrical energy consumption data and lack of thorough understanding with regards to socio-economic influences on energy efficiency investment. This study uses a bottom up approach to estimate baseline electricity end-use as well as the energy consumption of best available technologies to enable estimation of energy-efficiency resource in terms of relative reduction in total energy use for Tema city, Ghana. A ground survey was conducted to assess the probable consumer behavior in response to energy efficiency initiatives to enable estimation of the amount of savings that would occur in response to specific policy interventions with regards to funding and incentives provision targeted at households. Results show that 16% - 54% reduction in annual electricity consumption is reasonably achievable depending on the level of incentives provision. The saved energy could supply 10000 - 34000 additional households if the added households use only best available technology. Political support and consumer awareness are necessary to translate energy efficiency resources into real energy savings.

Keywords: achievable energy savings, energy efficiency, Ghana, household appliances

Procedia PDF Downloads 214
24908 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions

Authors: Kusum Tharani, Ratna Dahiya

Abstract:

This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.

Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault

Procedia PDF Downloads 553
24907 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test

Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri

Abstract:

This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.

Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test

Procedia PDF Downloads 380
24906 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 171
24905 Public Participation and Decision-Making towards Planning Legislation: A Case for GCC Countries

Authors: Saad Saeed Althiabi

Abstract:

There is great progress in formulating and executing legislative policies in GCC, however, the public participation in formulating and in major decision making still remains weak. Drawing attention on the international law of public participation in construction and natural resource management, this paper aims in creating a feasible legislative framework for extensive public participation in the industries such as construction and oil and gas decision-making that GCC can implement. This paper would address the conflicts associated with the management and creation of legislation and ensuring public participation for the creation of a practical framework. A feasible legislative framework must take into account the various factors that shape the effectiveness of participation and the elements that promote the objectives of participation. It is premised on the ground that viewing to international prescriptions might help to reveal gaps in domestic laws, as well as alternatives to overcome them.

Keywords: legislative policies, public participation, planning legislation, GCC countries, international law

Procedia PDF Downloads 535
24904 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River

Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang

Abstract:

The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.

Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander

Procedia PDF Downloads 319
24903 Promoters' Perspectives on the Impact of Development Projects: Do They Suffer from Any Forms of Social Injustice?

Authors: Ola Hosny

Abstract:

This paper illustrates promoters’ role in any development project and factors affecting their performance. The paper starts by giving an overview of the Egyptian context and the born of non-formal education. This is then followed by answers to the following questions; who are promoters, why build promoters’ skills, do promoters suffer from any forms of social injustice, what is meant by leadership’s skills, why build promoters’ leadership skills in specific, and finally what is the desired final destination. Given the fact that promoters are the actual implementers on ground of any project, this paper pinpoints the extent to which promoters' capacities should be developed to institutionalize projects' values into the community, transfer knowledge, and be able to act as pillars of change to sustain the maximum achievements from any intervention, illustrating the role of education for sustainable development. The paper wraps-up by a conclusion that reflects the main findings.

Keywords: social justice, women's empowerment, gender equity, young rural women, promoters

Procedia PDF Downloads 356
24902 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 180
24901 Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver

Authors: Win Zaw Hein, Khin Sandar Linn, Su Su Yi Mon, Yoshitaka Goto

Abstract:

The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement.

Keywords: ionosphere, global positioning system, GPS, ionospheric delay, total electron content, TEC

Procedia PDF Downloads 137
24900 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: seismic, bridge, FEM, evaluation, numerical analysis

Procedia PDF Downloads 366
24899 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 476
24898 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
24897 Harmonization in International Trade Law

Authors: Pouria Ghidi

Abstract:

Creating convergence in trade is very important, but in practice, this seems out of reach due to the conflict of interests and views of countries. The most important mission of UNCITRAL is to standardize and modernize international trade law through legislative and non-legislative tools on various issues of international trade law between governments. Unfortunately, the performance of governments has shown that, except in some cases, unity is not welcomed. Therefore, although unification is envisaged as a goal, it is more practical to create convergence between countries. In a variety of ways, UNCITRAL seeks to create a kind of common ground between influential actors in the international trade law system that approaches a degree of convergence of views. Accordingly, this realization seeks to find these mechanisms and their impact on creating convergence among actors in the field of international trade. In other words, this study seeks to address the question of what tools the UN Commission on International Trade Law uses to develop the convergence of rules and regulations in this area, which groups it targets, and at what levels they work.

Keywords: UNCITRAL, harmonization, unification in interpretation, international trade law, model laws

Procedia PDF Downloads 35
24896 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique

Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail

Abstract:

Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.

Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration

Procedia PDF Downloads 342
24895 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
24894 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
24893 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
24892 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
24891 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 465
24890 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
24889 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 399
24888 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry

Authors: F. Yildiz, S. Y. Oturanc

Abstract:

Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.

Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera

Procedia PDF Downloads 411
24887 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 147
24886 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58