Search results for: ultrasonic pulse velocity
2210 Comparative Analysis of SVPWM and the Standard PWM Technique for Three Level Diode Clamped Inverter fed Induction Motor
Authors: L. Lakhdari, B. Bouchiba, M. Bechar
Abstract:
The multi-level inverters present an important novelty in the field of energy control with high voltage and power. The major advantage of all multi-level inverters is the improvement and spectral quality of its generated output signals. In recent years, various pulse width modulation techniques have been developed. From these technics we have: Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM). This work presents a detailed analysis of the comparative advantage of space vector pulse width modulation (SVPWM) and the standard SPWM technique for Three Level Diode Clamped Inverter fed Induction Motor. The comparison is based on the evaluation of harmonic distortion THD.Keywords: induction motor, multilevel inverters, SVPWM, SPWM, THD
Procedia PDF Downloads 3382209 Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry
Authors: Yongseok Kwon, Woowon Jeong, Eunjin Cho, Sangkug Chung, Kyehan Rhee
Abstract:
Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement.Keywords: oscillating bubble, particle image velocimetry, microstreaming, vortices,
Procedia PDF Downloads 4132208 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method
Authors: Hamidreza Mansouri
Abstract:
In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.
Procedia PDF Downloads 502207 Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique
Authors: Noushin Shokouhinejad, Hasan Razmi, Reza Fekrazad, Saeed Asgary, Ammar Neshati, Hadi Assadian, Sanam Kheirieh
Abstract:
This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities.Keywords: bond strength, Er, Cr:YSGG laser, MTA, NEC, root-end cavity
Procedia PDF Downloads 3452206 Production and Characterization of Nanofibrillated Cellulose from Kenaf Core (Hibiscus cannabinus) via Ultrasonic
Authors: R. Rosazley, M. A. Izzati, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. A. Ainun Zuriyati
Abstract:
This study focuses on production and characterizations of nanofibrillated cellulose (NFC) from kenaf core. NFC was produced by employing ultrasonic treatments in aqueous solution. Field emission scanning electron microscope (FESEM) and scanning transmission electron microscopy (STEM) were used to study the size and morphology structure. The chemical and characteristics of the cellulose and NFC were studied using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometer. Degrees of polymerization (DP) of cellulose and NFC were obtained via viscosity value. Results showed that 5 to 47 nm diameters of fibrils were measured. Moreover, the thermal stability of the NFC was increased as compared to the cellulose that confirmed by TGA analysis. It was also found that NFC had higher crystallinity and lower viscosity than the cellulose which were measured by XRD and viscometer, respectively. The NFC characteristics have enormous prospect related to bio-nanocomposite.Keywords: crystallinity, kenaf core, nanofibrillated cellulose, ultrasonic
Procedia PDF Downloads 3262205 Ultrasonic Assisted Growth of ZnO Nanorods at Low Temperature
Authors: Khairul Anuar, Wai Yee Lee, Daniel C. S. Bien, Hing Wah Lee, Ishak Azid
Abstract:
This paper investigates the effect of ultrasonic treatment on ZnO nutrient solution prior to the growth of ZnO nanorods, where the seed layer is annealed at 50 and 100°C. The results show that the ZnO nanorods are successfully grown on the sample annealed at 50°C in the sonicated ZnO nutrient solution with a length and a diameter of approximately 8.025 µm and 92 nm, respectively. However, no ZnO nanorods structures are observed for the sample annealed at 50°C and grown in unsonicated ZnO nutrient solution. Meanwhile, the ZnO nanorods for the sample annealed at 100°C are successfully grown in both sonicated and unsonicated ZnO nutrient solutions. The length and diameter of the nanorods for the sample grown in the sonicated solution are 8.681 µm and 1.033 nm, whereas those for the sample grown in the unsonicated solution are 7.613 µm and 1.040 nm. This result shows that with ultrasonic treatment, the length of the ZnO nanorods increases by 14%, whereas their diameter is reduced by 0.7%, resulting in an increase of aspect ratio from 7:1 to 8:1. Electroconductivity and pH sensors are used to measure the conductivity and acidity level of the sonicated and unsonicated solutions, respectively. The result shows that the conductivity increases from 87 mS/cm to 10.4 mS/cm, whereas the solution pH decreases from 6.52 to 6.13 for the sonicated and unsonicated solutions, respectively. The increase in solution conductivity and acidity level elucidates the higher amount of zinc nutrient in the sonicated solution than in the unsonicated solution.Keywords: ultrasonic treatment, low annealing temperature, ZnO nanostructure, nanorods
Procedia PDF Downloads 3692204 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 5152203 Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method
Authors: Nosheen Zareen Khan, Abdul Majeed Siddiqui, Muhammad Afzal Rana
Abstract:
The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number.Keywords: approximate solution, constricted tube, non-Newtonian fluids, Reynolds number
Procedia PDF Downloads 3982202 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm
Procedia PDF Downloads 1702201 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing
Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj
Abstract:
This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano
Procedia PDF Downloads 582200 A New Approach on the Synthesis of Zinc Borates by Ultrasonic Method and Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio
Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, S. Piskin, N. Tugrul
Abstract:
Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, a new method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4, and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to the synthesis, the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.Keywords: zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency
Procedia PDF Downloads 3502199 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves
Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis
Abstract:
Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities
Procedia PDF Downloads 2652198 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care
Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger
Abstract:
Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus
Procedia PDF Downloads 1222197 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity
Procedia PDF Downloads 3242196 Velocity Distribution in Density Currents Flowing over Rough Beds
Authors: Reza Nasrollahpour, Mohamad Hidayat Bin Jamal, Zulhilmi Bin Ismail
Abstract:
Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region.Keywords: density currents, velocity profiles, Acoustic Doppler Velocimeter, bed roughness
Procedia PDF Downloads 1852195 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling
Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy
Procedia PDF Downloads 4962194 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 3152193 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study
Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad
Abstract:
Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite
Procedia PDF Downloads 5532192 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine
Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova
Abstract:
The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave
Procedia PDF Downloads 3762191 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)
Authors: Philipp Zopf, Franz Haas
Abstract:
Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.Keywords: drilling, machining, milling, ultrasonic
Procedia PDF Downloads 2742190 Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator
Authors: Zara L. Sheady
Abstract:
Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification.Keywords: ANSYS CFX, control, fluidic oscillators, mechanics, pressure, relationship, velocity
Procedia PDF Downloads 3372189 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation
Authors: Miao Yang
Abstract:
PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis
Procedia PDF Downloads 1802188 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap
Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi
Abstract:
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound
Procedia PDF Downloads 782187 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3862186 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft
Authors: Lucjan Setlak, Emil Ruda
Abstract:
The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)
Procedia PDF Downloads 4942185 Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles
Authors: Jin-Hong Kim
Abstract:
Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, Ecdyonurus kibunensis, Paraleptophlebia cocorata, Chironomidae sp. and Psilotreta kisoensis iwata were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity.Keywords: benthic macroinvertebrates, riffles, clinger, swimmer, burrower, sprawler
Procedia PDF Downloads 2112184 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector
Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy
Abstract:
In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers
Procedia PDF Downloads 3892183 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation
Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang
Abstract:
A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography
Procedia PDF Downloads 4292182 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil
Authors: Morteza Mirhosseini, Amir B. Khoshnevis
Abstract:
The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil
Procedia PDF Downloads 4922181 The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity
Authors: M. Nghizaderokni, A. Janalizadechobbasty, M. Azizi, M. Naghizaderokni
Abstract:
The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes.Keywords: soil, liquefaction, shear wave velocity, standard penetration resistance
Procedia PDF Downloads 395