Search results for: Abdelkader Nour
4 Assessing Sexual and Reproductive Health Literacy and Engagement Among Refugee and Immigrant Women in Massachusetts: A Qualitative Community-Based Study
Authors: Leen Al Kassab, Sarah Johns, Helen Noble, Nawal Nour, Elizabeth Janiak, Sarrah Shahawy
Abstract:
Introduction: Immigrant and refugee women experience disparities in sexual and reproductive health (SRH) outcomes, partially as a result of barriers to SRH literacy and to regular healthcare access and engagement. Despite the existing data highlighting growing needs for culturally relevant and structurally competent care, interventions are scarce and not well-documented. Methods: In this IRB-approved study, we used a community-based participatory research approach, with the assistance of a community advisory board, to conduct a qualitative needs assessment of SRH knowledge and service engagement with immigrant and refugee women from Africa or the Middle East and currently residing in Boston. We conducted a total of nine focus group discussions (FGDs) in partnership with medical, community, and religious centers, in six languages: Arabic, English, French, Somali, Pashtu, and Dari. A total of 44 individuals participated. We explored migrant and refugee women’s current and evolving SRH care needs and gaps, specifically related to the development of interventions and clinical best practices targeting SRH literacy, healthcare engagement, and informed decision-making. Recordings of the FGDs were transcribed verbatim and translated by interpreter services. We used open coding with multiple coders who resolved discrepancies through consensus and iteratively refined our codebook while coding data in batches using Dedoose software. Results: Participants reported immigrant adaptation experiences, discrimination, and feelings of trust, autonomy, privacy, and connectedness to family, community, and the healthcare system as factors surrounding SRH knowledge and needs. The context of previously learned SRH knowledge was commonly noted to be in schools, at menstruation, before marriage, from family members, partners, friends, and online search engines. Common themes included empowering strength drawn from religious and cultural communities, difficulties bridging educational gaps with their US- born daughters, and a desire for more SRH education from multiple sources, including family, health care providers, and religious experts & communities. Regarding further SRH education, participants’ preferences varied regarding ideal platform (virtual vs. in-person), location (in religious and community centers or not), smaller group sizes, and the involvement of men. Conclusions: Based on these results, empowering SRH initiatives should include both community and religious center-based, as well as clinic-based, interventions. Interventions should be composed of frequent educational workshops in small groups involving age-grouped women, daughters, and (sometimes) men, tailored SRH messaging, and the promotion of culturally, religiously, and linguistically competent care.Keywords: community, immigrant, religion, sexual & reproductive health, women's health
Procedia PDF Downloads 1273 Segmentation along the Strike-slip Fault System of the Chotts Belt, Southern Tunisia
Authors: Abdelkader Soumaya, Aymen Arfaoui, Noureddine Ben Ayed, Ali Kadri
Abstract:
The Chotts belt represents the southernmost folded structure in the Tunisian Atlas domain. It is dominated by inherited deep extensional E-W trending fault zones, which are reactivated as strike-slip faults during the Cenozoic compression. By examining the geological maps at different scales and based on the fieldwork data, we propose new structural interpretations for the geometries and fault kinematics in the Chotts chain. A set of ENE-WSW right-lateral en echelon folds, with curved shapes and steeply inclined southern limbs, is visible in the map view of this belt. These asymmetric tight anticlines are affected by E-W trending fault segments linked by local bends and stepovers. The revealed kinematic indicators along one of these E-W striated faults (Tafferna segment), such as breccias and gently inclined slickenlines (N094, 80N, 15°W pitch angles), show direct evidence of dextral strike-slip movement. The calculated stress tensors from corresponding faults slip data reveal an overall strike-slip tectonic regime with reverse component and NW-trending sub-horizontal σ1 axis ranking between N130 to N150. From west to east, we distinguished several types of structures along the segmented dextral fault system of the Chotts Range. The NE-SW striking fold-thrust belt (~25 km-long) between two continuously linked E-W fault segments (NW of Tozeur town) has been suggested as a local restraining bend. The central part of the Chotts chain is occupied by the ENE-striking Ksar Asker anticlines (Taferna, Torrich, and Sif Laham), which are truncated by a set of E-W strike-slip fault segments. Further east, the fault segments of Hachichina and Sif Laham connected across the NW-verging asymmetric fold-thrust system of Bir Oum Ali, which can be interpreted as a left-stepping contractional bend (~20 km-long). The oriental part of the Chotts belt corresponds to an array of subparallel E-W oriented fault segments (i.e., Beidha, Bouloufa, El Haidoudi-Zemlet El Beidha) with similar lengths (around 10 km). Each of these individual separated segments is associated with curved ENE-trending en echelon right-stepping anticlines. These folds are affected by a set of conjugate R and R′ shear-type faults indicating a dextral strike-lip motion. In addition, the relay zones between these E-W overstepping fault segments define local releasing stepovers dominated by NW-SE subsidiary faults. Finally, the Chotts chain provides well-exposed examples of strike-slip tectonics along E-W distributed fault segments. Each fault zone shows a typical strike-slip architecture, including parallel fault segments connecting via local stepovers or bends. Our new structural interpretations for this region reveal a great influence of the E-W deep fault segments on regional tectonic deformations and stress field during the Cenozoic shortening.Keywords: chotts belt, tunisian atlas, strike-slip fault, stepovers, fault segments
Procedia PDF Downloads 692 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham
Abstract:
The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault
Procedia PDF Downloads 491 Geodynamic Evolution of the Tunisian Dorsal Backland (Central Mediterranean) from the Cenozoic to Present
Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed
Abstract:
The study region is located in the Tunisian Dorsal Backland (Central Mediterranean), which is the easternmost part of the Saharan Atlas mountain range, trending southwest-northeast. Based on our fieldwork, seismic tomography images, seismicity, and previous studies, we propose an interpretation of the relationship between the surface deformation and fault kinematics in the study area and the internal dynamic processes acting in the Central Mediterranean from the Cenozoic to the present. The subduction and dynamics of internal forces beneath the complicated Maghrebides mobile belt have an impact on the Tertiary and Quaternary tectonic regimes in the Pelagian and Atlassic foreland that is part of our study region. The left lateral reactivation of the major "Tunisian N-S Axis fault" and the development of a compressional relay between the Hammamet Korbous and Messella-Ressas faults are possibly a result of tectonic stresses due to the slab roll-back following the Africa/Eurasia convergence. After the slab segmentation and its eastward migration (5–4 Ma) and the formation of the Strait of Sicily "rift zone" further east, a transtensional tectonic regime has been installed in this area. According to seismic tomography images, the STEP fault of the "North-South Axis" at Hammamet-Korbous coincides with the western edge of the "Slab windows" of the Sicilian Channel and the eastern boundary of the positive anomalies attributed to the residual Slab of Tunisia. On the other hand, significant E-W Plio-Quaternary tectonic activity may be observed along the eastern portion of this STEP fault system in the Grombalia zone as a result of recent vertical lithospheric motion in response to the lateral slab migration eastward to Sicily Channel. According to SKS fast splitting directions, the upper mantle flow pattern beneath Tunisian Dorsal is parallel to the NE-SW to E-W orientation of the Shmin identified in the study area, similar to the Plio-Quaternary extensional orientation in the Central Mediterranean. Additionally, the removal of the lithosphere and the subsequent uplift of the sub-lithospheric mantle beneath the topographic highs of the Dorsal and its surroundings may be the cause of the dominant extensional to transtensional Quaternary regime. The occurrence of strike-slip and extensional seismic events in the Pelagian block reveals that the regional transtensional tectonic regime persists today. Finally, we believe that the geodynamic history of the study area since the Cenozoic is primarily influenced by the preexisting weak zones, the African slab detachment, and the upper mantle flow pattern in the central Mediterranean.Keywords: Tunisia, lithospheric discontinuity (STEP fault), geodynamic evolution, Tunisian dorsal backland, strike-slip fault, seismic tomography, seismicity, central Mediterranean
Procedia PDF Downloads 80