Search results for: potential problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17851

Search results for: potential problem

121 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 100
120 An Explorative Analysis of Effective Project Management of Research and Research-Related Projects within a recently Formed Multi-Campus Technology University

Authors: Àidan Higgins

Abstract:

Higher education will be crucial in the coming decades in helping to make Ireland a nation is known for innovation, competitive enterprise, and ongoing academic success, as well as a desirable location to live and work with a high quality of life, vibrant culture, and inclusive social structures. Higher education institutions will actively connect with each student community, society, and business; they will help students develop a sense of place and identity in Ireland and provide the tools they need to contribute significantly to the global community. It will also serve as a catalyst for novel ideas through research, many of which will become the foundation for long-lasting inventive businesses in the future as part of the 2030 National Strategy on Education focuses on change and developing our education system with a focus on how we carry out Research. The emphasis is central to knowledge transfer and a consistent research framework with exploiting opportunities and having the necessary expertise. The newly formed Technological Universities (TU) in Ireland are based on a government initiative to create a new type of higher education institution that focuses on applied and industry-focused research and education. The basis of the TU is to bring together two or more existing institutes of technology to create a larger and more comprehensive institution that offers a wider range of programs and services to students and industry partners. The TU model aims to promote collaboration between academia, industry, and community organizations to foster innovation, research, and economic development. The TU model also aims to enhance the student experience by providing a more seamless pathway from undergraduate to postgraduate studies, as well as greater opportunities for work placements and engagement with industry partners. Additionally, the TUs are designed to provide a greater emphasis on applied research, technology transfer, and entrepreneurship, with the goal of fostering innovation and contributing to economic growth. A project is a collection of organised tasks carried out precisely to produce a singular output (product or service) within a given time frame. Project management is a set of activities that facilitates the successful implementation of a project. The significant differences between research and development projects are the (lack of) precise requirements and (the inability to) plan an outcome from the beginning of the project. The evaluation criteria for a research project must consider these and other "particularities" in works; for instance, proving something cannot be done may be a successful outcome. This study intends to explore how a newly established multi-campus technological university manages research projects effectively. The study will identify the potential and difficulties of managing research projects, the tools, resources and processes available in a multi-campus Technological University context and the methods and approaches employed to deal with these difficulties. Key stakeholders like project managers, academics, and administrators will be surveyed as part of the study, which will also involve an explorative investigation of current literature and data. The findings of this study will contribute significantly to creating best practices for project management in this setting and offer insightful information about the efficient management of research projects within a multi-campus technological university.

Keywords: project management, research and research-related projects, multi-campus technology university, processes

Procedia PDF Downloads 60
119 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil

Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu

Abstract:

Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.

Keywords: characterisation, biomass waste, saw dust, wood waste

Procedia PDF Downloads 68
118 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 189
117 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning

Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król

Abstract:

Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.

Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building

Procedia PDF Downloads 114
116 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits

Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams

Abstract:

As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.

Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment

Procedia PDF Downloads 159
115 Production of Insulin Analogue SCI-57 by Transient Expression in Nicotiana benthamiana

Authors: Adriana Muñoz-Talavera, Ana Rosa Rincón-Sánchez, Abraham Escobedo-Moratilla, María Cristina Islas-Carbajal, Miguel Ángel Gómez-Lim

Abstract:

The highest rates of diabetes incidence and prevalence worldwide will increase the number of diabetic patients requiring insulin or insulin analogues. Then, current production systems would not be sufficient to meet the future market demands. Therefore, developing efficient expression systems for insulin and insulin analogues are needed. In addition, insulin analogues with better pharmacokinetics and pharmacodynamics properties and without mitogenic potential will be required. SCI-57 (single chain insulin-57) is an insulin analogue having 10 times greater affinity to the insulin receptor, higher resistance to thermal degradation than insulin, native mitogenicity and biological effect. Plants as expression platforms have been used to produce recombinant proteins because of their advantages such as cost-effectiveness, posttranslational modifications, absence of human pathogens and high quality. Immunoglobulin production with a yield of 50% has been achieved by transient expression in Nicotiana benthamiana (Nb). The aim of this study is to produce SCI-57 by transient expression in Nb. Methodology: DNA sequence encoding SCI-57 was cloned in pICH31070. This construction was introduced into Agrobacterium tumefaciens by electroporation. The resulting strain was used to infiltrate leaves of Nb. In order to isolate SCI-57, leaves from transformed plants were incubated 3 hours with the extraction buffer therefore filtrated to remove solid material. The resultant protein solution was subjected to anion exchange chromatography on an FPLC system and ultrafiltration to purify SCI-57. Detection of SCI-57 was made by electrophoresis pattern (SDS-PAGE). Protein band was digested with trypsin and the peptides were analyzed by Liquid chromatography tandem-mass spectrometry (LC-MS/MS). A purified protein sample (20µM) was analyzed by ESI-Q-TOF-MS to obtain the ionization pattern and the exact molecular weight determination. Chromatography pattern and impurities detection were performed using RP-HPLC using recombinant insulin as standard. The identity of the SCI-57 was confirmed by anti-insulin ELISA. The total soluble protein concentration was quantified by Bradford assay. Results: The expression cassette was verified by restriction mapping (5393 bp fragment). The SDS-PAGE of crude leaf extract (CLE) of transformed plants, revealed a protein of about 6.4 kDa, non-present in CLE of untransformed plants. The LC-MS/MS results displayed one peptide with a high score that matches SCI-57 amino acid sequence in the sample, confirming the identity of SCI-57. From the purified SCI-57 sample (PSCI-57) the most intense charge state was 1069 m/z (+6) on the displayed ionization pattern corresponding to the molecular weight of SCI-57 (6412.6554 Da). The RP-HPLC of the PSCI-57 shows the presence of a peak with similar retention time (rt) and UV spectroscopic profile to the insulin standard (SCI-57 rt=12.96 and insulin rt=12.70 min). The collected SCI-57 peak had ELISA signal. The total protein amount in CLE from transformed plants was higher compared to untransformed plants. Conclusions: Our results suggest the feasibility to produce insulin analogue SCI-57 by transient expression in Nicotiana benthamiana. Further work is being undertaken to evaluate the biological activity by glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes.

Keywords: insulin analogue, mass spectrometry, Nicotiana benthamiana, transient expression

Procedia PDF Downloads 348
114 Transcending Boundaries: Integrating Urban Vibrancy with Contemporary Interior Design through Vivid Wall Pieces

Authors: B. C. Biermann

Abstract:

This in-depth exploration investigates the transformative integration of urban vibrancy into contemporary interior design through the strategic incorporation of vivid wall pieces. Bridging the gap between public dynamism and private tranquility, this study delves into the nuanced methodologies, creative processes, and profound impacts of this innovative approach. Drawing inspiration from street art's dynamic language and the timeless allure of natural beauty, these artworks serve as conduits, orchestrating a dialogue that challenges traditional boundaries and redefines the relationship between external chaos and internal sanctuaries. The fusion of urban vibrancy with contemporary interior design represents a paradigm shift, where the inherent dynamism of public spaces harmoniously converges with the curated tranquility of private environments. This paper aims to explore the underlying principles, creative processes, and transformative impacts of integrating vivid wall pieces as instruments for bringing the "outside in." Employing an innovative and meticulous methodology, street art elements are synthesized with the refined aesthetics of contemporary design. This delicate balance necessitates a nuanced understanding of both artistic realms, ensuring a synthesis that captures the essence of urban energy while seamlessly blending with the sophistication of modern interior design. The creative process involves a strategic selection of street art motifs, colors, and textures that resonate with the organic beauty found in natural landscapes, creating a symbiotic relationship between the grittiness of the streets and the elegance of interior spaces. This groundbreaking approach defies traditional boundaries by integrating dynamic street art into interior spaces, blurring the demarcation between external chaos and internal tranquility. Vivid wall pieces serve as dynamic focal points, transforming physical spaces and challenging conventional perceptions of where art belongs. This redefinition asserts that boundaries are fluid and meant to be transcended. Case studies illustrate the profound impact of integrating vivid wall pieces on the aesthetic appeal of interior spaces. Urban vibrancy revitalizes the atmosphere, infusing it with palpable energy that resonates with the vivacity of public spaces. The curated tranquility of private interiors coexists harmoniously with the dynamic visual language of street art, fostering a unique and evolving relationship between inhabitants and their living spaces. Emphasizing harmonious coexistence, the paper underscores the potential for a seamless dialogue between public urban spaces and private interiors. The integration of vivid wall pieces acts as a bridge rather than a dichotomy, merging the dynamism of street art with the curated elegance of contemporary design. This unique visual tapestry transcends traditional categorizations, fostering a symbiotic relationship between contrasting worlds. In conclusion, this paper posits that the integration of vivid wall pieces represents a transformative tool for contemporary interior design, challenging and redefining conventional boundaries. By strategically bringing the "outside in," this approach transforms interior spaces and heralds a paradigm shift in the relationship between urban aesthetics and contemporary living. The ongoing narrative between urban vibrancy and interior design creates spaces that reflect the dynamic and ever-evolving nature of the surrounding environment.

Keywords: Art Integration, Contemporary Interior Design, Interior Space Transformation, Vivid Wall Pieces

Procedia PDF Downloads 81
113 Tailoring Workspaces for Generation Z: Harmonizing Teamwork, Privacy, and Connectivity

Authors: Maayan Nakash

Abstract:

The modern workplace is undergoing a revolution, with Generation Z (Gen-Z) at the forefront of this transformative shift. However, empirical investigations specifically targeting the workplace preferences of this generation remain limited. Through direct examination of their tendencies via a survey approach, this study offers vital insights for aligning organizational policies and practices. The results presented in this paper are part of a comprehensive study that explored Gen Z's viewpoints on various employment market aspects, likely to decisively influence the design of future work environments. Data were collected via an online survey distributed among a cohort of 461 individuals from Gen-Z, born between the mid-1990s and 2010, consisting of 241 males (52.28%) and 220 females (47.72%). Responses were gauged using Likert scale statements that probed preferences for teamwork versus individual work, virtual versus personal interactions, and open versus private workspaces. Descriptive statistics and analytical analyses were conducted to pinpoint key patterns. We discovered that a high proportion of respondents (81.99%, n=378) exhibited a preference for teamwork over individual work. Correspondingly, the data indicate strong support for the recognition of team-based tasks as a tool contributing to personal and professional development. In terms of communication, the majority of respondents (61.38%) either disagreed (n=154) or slightly agreed (n=129) with the exclusive reliance on virtual interactions with their organizational peers. This finding underscores that despite technological progress, digital natives place significant value on physical interaction and non-mediated communication. Moreover, we understand that they also value a quiet and private work environment, clearly preferring it over open and shared workspaces. Considering that Gen-Z does not necessarily experience high levels of stress within social frameworks in the workplace, this can be attributed to a desire for a space that allows for focused engagement with work tasks. A One-Sample Chi-Square Test was performed on the observed distribution of respondents' reactions to each examined statement. The results showed statistically significant deviations from a uniform distribution (p<.001), indicating that the response patterns did not occur by chance and that there were meaningful tendencies in the participants' responses. The findings expand the theoretical knowledge base on human resources in the dynamics of a multi-generational workforce, illuminating the values, approaches, and expectations of Gen-Z. Practically, the results may lead organizations to equip themselves with tools to create policies tailored to Gen-Z in the context of workspaces and social needs, which could potentially foster a fertile environment and aid in attracting and retaining young talent. Future studies might include investigating potential mitigating factors, such as cultural influences or individual personality traits, which could further clarify the nuances in Gen-Z's work style preferences. Longitudinal studies tracking changes in these preferences as the generation matures may also yield valuable insights. Ultimately, as the landscape of the workforce continues to evolve, ongoing investigations into the unique characteristics and aspirations of emerging generations remain essential for nurturing harmonious, productive, and future-ready organizational environments.

Keywords: workplace, future of work, generation Z, digital natives, human resources management

Procedia PDF Downloads 53
112 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies

Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho

Abstract:

The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.

Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system

Procedia PDF Downloads 179
111 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 132
110 Classical Improvisation Facilitating Enhanced Performer-Audience Engagement and a Mutually Developing Impulse Exchange with Concert Audiences

Authors: Pauliina Haustein

Abstract:

Improvisation was part of Western classical concert culture and performers’ skill sets until early 20th century. Historical accounts, as well as recent studies, indicate that improvisatory elements in the programme may contribute specifically towards the audiences’ experience of enhanced emotional engagement during the concert. This paper presents findings from the author’s artistic practice research, which explored re-introducing improvisation to Western classical performance practice as a musician (cellist and ensemble partner/leader). In an investigation of four concert cycles, the performer-researcher sought to gain solo and chamber music improvisation techniques (both related to and independent of repertoire), conduct ensemble improvisation rehearsals, design concerts with an improvisatory approach, and reflect on interactions with audiences after each concert. Data was collected through use of reflective diary, video recordings, measurement of sound parameters, questionnaires, a focus group, and interviews. The performer’s empirical experiences and findings from audience research components were juxtaposed and interrogated to better understand the (1) rehearsal and planning processes that enable improvisatory elements to return to Western classical concert experience and (2) the emotional experience and type of engagement that occur throughout the concert experience for both performer and audience members. This informed the development of a concert model, in which a programme of solo and chamber music repertoire and improvisations were combined according to historically evidenced performance practice (including free formal solo and ensemble improvisations based on audience suggestions). Inspired by historical concert culture, where elements of risk-taking, spontaneity, and audience involvement (such as proposing themes for fantasies) were customary, this concert model invited musicians to contribute to the process personally and creatively at all stages, from programme planning, and throughout the live concert. The type of democratic, personal, creative, and empathetic collaboration that emerged, as a result, appears unique in Western classical contexts, rather finding resonance in jazz ensemble, drama, or interdisciplinary settings. The research identified features of ensemble improvisation, such as empathy, emergence, mutual engagement, and collaborative creativity, that became mirrored in audience’s responses, generating higher levels of emotional engagement, empathy, inclusivity, and a participatory, co-creative experience. It appears that duringimprovisatory moments in the concert programme, audience members started feeling more like active participants in za\\a creative, collaborative exchange and became stakeholders in a deeper phenomenon of meaning-making and narrativization. Examining interactions between all involved during the concert revealed that performer-audience impulse exchange occurred on multiple levels of awareness and seemed to build upon each other, resulting in particularly strong experiences of both performer and audience’s engagement. This impact appeared especially meaningful for audience members who were seldom concertgoers and reported little familiarity with classical music. The study found that re-introducing improvisatory elements to Western classical concert programmes has strong potential in increasing audience’s emotional engagement with the musical performance, enabling audience members to connect more personally with the individual performers, and in reaching new-to-classical-music audiences.

Keywords: artistic research, audience engagement, audience experience, classical improvisation, ensemble improvisation, emotional engagement, improvisation, improvisatory approach, musical performance, practice research

Procedia PDF Downloads 128
109 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 77
108 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement

Authors: Moshreka Aditi Huq

Abstract:

This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.

Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous

Procedia PDF Downloads 125
107 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones

Abstract:

Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.

Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact

Procedia PDF Downloads 194
106 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 48
105 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia

Authors: Dhekra Khazri, Hakim Gabtni

Abstract:

Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.

Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector

Procedia PDF Downloads 283
104 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 229
103 Elevated Systemic Oxidative-Nitrosative Stress and Cerebrovascular Function in Professional Rugby Union Players: The Link to Impaired Cognition

Authors: Tom S. Owens, Tom A. Calverley, Benjamin S. Stacey, Christopher J. Marley, George Rose, Lewis Fall, Gareth L. Jones, Priscilla Williams, John P. R. Williams, Martin Steggall, Damian M. Bailey

Abstract:

Introduction and aims: Sports-related concussion (SRC) represents a significant and growing public health concern in rugby union, yet remains one of the least understood injuries facing the health community today. Alongside increasing SRC incidence rates, there is concern that prior recurrent concussion may contribute to long-term neurologic sequelae in later-life. This may be due to an accelerated decline in cerebral perfusion, a major risk factor for neurocognitive decline and neurodegeneration, though the underlying mechanisms remain to be established. The present study hypothesised that recurrent concussion in current professional rugby union players would result in elevated systemic oxidative-nitrosative stress, reflected by a free radical-mediated reduction in nitric oxide (NO) bioavailability and impaired cerebrovascular and cognitive function. Methodology: A longitudinal study design was adopted across the 2017-2018 rugby union season. Ethical approval was obtained from the University of South Wales Ethics Committee. Data collection is ongoing, and therefore the current report documents result from the pre-season and first half of the in-season data collection. Participants were initially divided into two subgroups; 23 professional rugby union players (aged 26 ± 5 years) and 22 non-concussed controls (27 ± 8 years). Pre-season measurements were performed for cerebrovascular function (Doppler ultrasound of middle cerebral artery velocity (MCAv) in response to hypocapnia/normocapnia/hypercapnia), cephalic venous concentrations of the ascorbate radical (A•-, electron paramagnetic resonance spectroscopy), NO (ozone-based chemiluminescence) and cognition (neuropsychometric tests). Notational analysis was performed to assess contact in the rugby group throughout each competitive game. Results: 1001 tackles and 62 injuries, including three concussions were observed across the first half of the season. However, no associations were apparent between number of tackles and any injury type (P > 0.05). The rugby group expressed greater oxidative stress as indicated by increased A•- (P < 0.05 vs. control) and a subsequent decrease in NO bioavailability (P < 0.05 vs. control). The rugby group performed worse in the Ray Auditory Verbal Learning Test B (RAVLT-B, learning, and memory) and the Grooved Pegboard test using both the dominant and non-dominant hands (visuomotor coordination, P < 0.05 vs. control). There were no between-group differences in cerebral perfusion at baseline (MCAv: 54 ± 13 vs. 59 ± 12, P > 0.05). Likewise, no between-group differences in CVRCO2Hypo (2.58 ± 1.01 vs. 2.58 ± 0.75, P > 0.05) or CVRCO2Hyper (2.69 ± 1.07 vs. 3.35 ± 1.28, P > 0.05) were observed. Conclusion: The present study identified that the rugby union players are characterized by impaired cognitive function subsequent to elevated systemic-oxidative-nitrosative stress. However, this appears to be independent of any functional impairment in cerebrovascular function. Given the potential long-term trajectory towards accelerated cognitive decline in populations exposed to SRC, prophylaxis to increase NO bioavailability warrants consideration.

Keywords: cognition, concussion, mild traumatic brain injury, rugby

Procedia PDF Downloads 176
102 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 229
101 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide

Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar

Abstract:

Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.

Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite

Procedia PDF Downloads 285
100 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem

Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis

Abstract:

Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile

Procedia PDF Downloads 259
99 Effects of Applying Low-Dye Taping in Performing Double-Leg Squat on Electromyographic Activity of Lower Extremity Muscles for Collegiate Basketball Players with Excessive Foot Pronation

Authors: I. M. K. Ho, S. K. Y. Chan, K. H. P. Lam, G. M. W. Tong, N. C. Y. Yeung, J. T. C. Luk

Abstract:

Low-dye taping (LDT) is commonly used for treating foot problems, such as plantar fasciitis, and supporting foot arch for runners and non-athletes patients with pes planus. The potential negative impact of pronated feet leading to tibial and femoral internal rotation via the entire kinetic chain reaction was postulated and identified. The changed lower limb biomechanics potentially leading to poor activation of hip and knee stabilizers, such as gluteus maximus and medius, may associate with higher risk of knee injuries including patellofemoral pain syndrome and ligamentous sprain in many team sports players. It is therefore speculated that foot arch correction with LDT might enhance the use of gluteal muscles. The purpose of this study was to investigate the effect of applying LDT on surface electromyographic (sEMG) activity of superior gluteus maximus (SGMax), inferior gluteus maximus (IGMax), gluteus medius (GMed) and tibialis anterior (TA) during double-leg squat. 12 male collegiate basketball players (age: 21.72.5 years; body fat: 12.43.6%; navicular drop: 13.72.7mm) with at least three years regular basketball training experience participated in this study. Participants were excluded if they had recent history of lower limb injuries, over 16.6% body fat and lesser than 10mm drop in navicular drop (ND) test. Recruited subjects visited the laboratory once for the within-subject crossover study. Maximum voluntary isometric contraction (MVIC) tests on all selected muscles were performed in randomized order followed by sEMG test on double-leg squat during LDT and non-LDT conditions in counterbalanced order. SGMax, IGMax, GMed and TA activities during the entire 2-second concentric and 2-second eccentric phases were normalized and interpreted as %MVIC. The magnitude of the difference between taped and non-taped conditions of each muscle was further assessed via standardized effect90% confidence intervals (CI) with non-clinical magnitude-based inference. Paired samples T-test showed a significant decrease (4.71.4mm) in ND (95% CI: 3.8, 5.6; p < 0.05) while no significant difference was observed between taped and non-taped conditions in sEMG tests for all muscles and contractions (p > 0.05). On top of traditional significant testing, magnitude-based inference showed possibly increase in IGMax activity (small standardized effect: 0.270.44), likely increase in GMed activity (small standardized effect: 0.340.34) and possibly increase in TA activity (small standardized effect: 0.220.29) during eccentric phase. It is speculated that the decrease of navicular drop supported by LDT application could potentially enhance the use of inferior gluteus maximus and gluteus medius especially during eccentric phase in this study. As the eccentric phase of double-leg squat is an important component of landing activities in basketball, further studies on the onset and amount of gluteal activation during jumping and landing activities with LDT are recommended. Since both hip and knee kinematics were not measured in this study, the underlying cause of the observed increase in gluteal activation during squat after LDT is inconclusive. In this regard, the investigation of relationships between LDT application, ND, hip and knee kinematics, and gluteal muscle activity during sports specific jumping and landing tasks should be focused in the future.

Keywords: flat foot, gluteus maximus, gluteus medius, injury prevention

Procedia PDF Downloads 155
98 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland

Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood

Abstract:

The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.

Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health

Procedia PDF Downloads 143
97 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
96 Nurturing Minds, Shaping Futures: A Reflective Journey of 32 Years as a Teacher Educator

Authors: Mary Isobelle Mullaney

Abstract:

The maxim "an unexamined life is not worth living," attributed to Socrates, prompts a contemplative reflection spanning over 32 years as a teacher educator in the Republic of Ireland. Taking time to contemplate the changes that have occurred and the current landscape provides valuable insights into the dynamic terrain of teacher preparation. The reflective journey traverses the impacts of global and societal shifts, responding to challenges, embracing advancements, and navigating the delicate balance between responsiveness to the world and the active shaping of it. The transformative events of the COVID-19 pandemic spotlighted the indispensable role of teachers in Ireland, reinforcing the critical nature of education for the well-being of pupils. Research solidifies the understanding that teachers matter and so it is worth exploring the pivotal role of the teacher educator. This reflective piece examines the changes in teacher education and explores the juxtapositions that have emerged in response to three decades of profound change. The attractiveness of teaching as a career is juxtaposed against the reality of the demands of the job, with conditions for public servants in Ireland undergoing a shift. High-level strategic discussions about increasing teacher numbers now contrast with a previous oversupply. The delicate balance between the imperative to increase enrolment (getting "bums on seats") and the gatekeeper role of teacher educators is explored, raising questions about maintaining high standards amid changing student profiles. Another poignant dichotomy involves the high demand for teachers versus the hurdles candidates face in becoming teachers. The rising cost and duration of teacher education courses raise concerns about attracting quality candidates. The perceived attractiveness of teaching as a career contends with the reality of increased demands on educators. One notable juxtaposition centres around the rapid evolution of Irish initial teacher education versus the potential risk of change overload. The Teaching Council of Ireland has spearheaded considerable changes, raising questions about the timing and evaluation of these changes. This reflection contemplates the vision of a professional teaching council versus its evolving reality and the challenges posed by the value placed on school placement in teacher preparation. The juxtapositions extend to the classroom, where theory may not seamlessly align with the lived experience. Inconsistencies between college expectations and the classroom reality prompt reflection on the effectiveness of teacher preparation programs. Addressing the changing demographic landscape of society and schools, there is a persistent incongruity between the diversity of Irish society and the profile of second-level teachers. As education undergoes a digital revolution, the enduring philosophies of education confront technological advances. This reflection highlights the tension between established practices and contemporary demands, acknowledging the irreplaceable value of face-to-face interaction while integrating technology into teacher training programs. In conclusion, this reflective journey encapsulates the intricate web of juxtapositions in Irish Initial Teacher Education. It emphasises the enduring commitment to fostering education, recognising the profound influence educators wield, and acknowledging the challenges and gratifications inherent in shaping the minds and futures of generations to come.

Keywords: Irish post primary teaching, juxtapositions, reflection, teacher education

Procedia PDF Downloads 55
95 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 62
94 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.

Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound

Procedia PDF Downloads 92
93 A Model for Analysing Argumentative Structures and Online Deliberation in User-Generated Comments to the Website of a South African Newspaper

Authors: Marthinus Conradie

Abstract:

The conversational dynamics of democratically orientated deliberation continue to stimulate critical scholarship for its potential to bolster robust engagement between different sections of pluralist societies. Several axes of deliberation that have attracted academic attention include face-to-face vs. online interaction, and citizen-to-citizen communication vs. engagement between citizens and political elites. In all these areas, numerous researchers have explored deliberative procedures aimed at achieving instrumental goals such a securing consensus on policy issues, against procedures that prioritise expressive outcomes such as broadening the range of argumentative repertoires that discursively construct and mediate specific political issues. The study that informs this paper, works in the latter stream. Drawing its data from the reader-comments section of a South African broadsheet newspaper, the study investigates online, citizen-to-citizen deliberation by analysing the discursive practices through which competing understandings of social problems are articulated and contested. To advance this agenda, the paper deals specifically with user-generated comments posted in response to news stories on questions of race and racism in South Africa. The analysis works to discern and interpret the various sets of discourse practices that shape how citizens deliberate contentious political issues, especially racism. Since the website in question is designed to encourage the critical comparison of divergent interpretations of news events, without feeding directly into national policymaking, the study adopts an analytic framework that traces how citizens articulate arguments, rather than the instrumental effects that citizen deliberations might exert on policy. The paper starts from the argument that such expressive interactions are particularly crucial to current trends in South African politics, given that the precise nature of race and racism remain contested and uncertain. Centred on a sample of 2358 conversational moves in 814 posts to 18 news stories emanating from issues of race and racism, the analysis proceeds in a two-step fashion. The first stage conducts a qualitative content analysis that offers insights into the levels of reciprocity among commenters (do readers engage with each other or simply post isolated opinions?), as well as the structures of argumentation (do readers support opinions by citing evidence?). The second stage involves a more fine-grained discourse analysis, based on a theorisation of argumentation that delineates it into three components: opinions/conclusions, evidence/data to support opinions/conclusions and warrants that explicate precisely how evidence/data buttress opinions/conclusions. By tracing the manifestation and frequency of specific argumentative practices, this study contributes to the archive of research currently aggregating around the practices that characterise South Africans’ engagement with provocative political questions, especially racism and racial inequity. Additionally, the study also contributes to recent scholarship on the affordances of Web 2.0 software by eschewing a simplistic bifurcation between cyber-optimist vs. pessimism, in favour of a more nuanced and context-specific analysis of the patterns that structure online deliberation.

Keywords: online deliberation, discourse analysis, qualitative content analysis, racism

Procedia PDF Downloads 177
92 Tangible Losses, Intangible Traumas: Re-envisioning Recovery Following the Lytton Creek Fire 2021 through Place Attachment Lens

Authors: Tugba Altin

Abstract:

In an era marked by pronounced climate change consequences, communities are observed to confront traumatic events that yield both tangible and intangible repercussions. Such events not only cause discernible damage to the landscape but also deeply affect the intangible aspects, including emotional distress and disruptions to cultural landscapes. The Lytton Creek Fire of 2021 serves as a case in point. Beyond the visible destruction, the less overt but profoundly impactful disturbance to place attachment (PA) is scrutinized. PA, representing the emotional and cognitive bonds individuals establish with their environments, is crucial for understanding how such events impact cultural identity and connection to the land. The study underscores the significance of addressing both tangible and intangible traumas for holistic community recovery. As communities renegotiate their affiliations with altered environments, the cultural landscape emerges as instrumental in shaping place-based identities. This renewed understanding is pivotal for reshaping adaptation planning. The research advocates for adaptation strategies rooted in the lived experiences and testimonies of the affected populations. By incorporating both the tangible and intangible facets of trauma, planning efforts are suggested to be more culturally attuned and emotionally insightful, fostering true resonance with the affected communities. Through such a comprehensive lens, this study contributes enriching the climate change discourse, emphasizing the intertwined nature of tangible recovery and the imperative of emotional and cultural healing after environmental disasters. Following the pronounced aftermath of the Lytton Creek Fire in 2021, research aims to deeply understand its impact on place attachment (PA), encompassing the emotional and cognitive bonds individuals form with their environments. The interpretive phenomenological approach, enriched by a hermeneutic framework, is adopted, emphasizing the experiences of the Lytton community and co-researchers. Phenomenology informed the understanding of 'place' as the focal point of attachment, providing insights into its formation and evolution after traumatic events. Data collection departs from conventional methods. Instead of traditional interviews, walking audio sessions and photo elicitation methods are utilized. These allow co-researchers to immerse themselves in the environment, re-experience, and articulate memories and feelings in real-time. Walking audio facilitates reflections on spatial narratives post-trauma, while photo voices captured intangible emotions, enabling the visualization of place-based experiences. The analysis is collaborative, ensuring the co-researchers' experiences and interpretations are central. Emphasizing their agency in knowledge production, the process is rigorous, facilitated by the harmonious blend of interpretive phenomenology and hermeneutic insights. The findings underscore the need for adaptation and recovery efforts to address emotional traumas alongside tangible damages. By exploring PA post-disaster, the research not only fills a significant gap but advocates for an inclusive approach to community recovery. Furthermore, the participatory methodologies employed challenge traditional research paradigms, heralding potential shifts in qualitative research norms.

Keywords: wildfire recovery, place attachment, trauma recovery, cultural landscape, visual methodologies

Procedia PDF Downloads 91