Search results for: vision sensor
706 NprRX Regulation on Surface Spreading Motility in Bacillus cereus
Authors: Yan-Shiang Chiou, Yi-Huang Hsueh
Abstract:
Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.Keywords: Bacillus cereus, nprRX, spo0A, spreading motility
Procedia PDF Downloads 256705 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern
Procedia PDF Downloads 353704 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 150703 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 244702 From Lack of Humanity to Self-Consciousness and Vision in Lord of the Flies and Blindness
Authors: Maryam Sadeghi
Abstract:
Civilization and industrialization are two important factors that make people believe they are just depriving of savagery and brutality. But practical studies show exactly something different. How groups of people behave, when they are put in extreme situations is the very unpleasant truth about the human being in general. Both novels deal with the fragility of human society, no matter the people who are playing a role are children or grown-ups, who by definition should know better. Both novels have got beautiful plots in which no one enforces rules and laws on the characters, so they begin to show their true nature. The present study is undertaken to investigate the process of a journey from lack of humanity to a sort of self-consciousness which happens at the end of both Blindness by Saramago and Lord of the Flies by Golding. In order to get the best result the two novels have been studied precisely and lots of different articles and critical essays have been analyzed, which shows people drift into cruelty and savagery easily but can also drift out of it. In blindness losing sight, and being apart from society in a deserted tropical island in Lord of the Flies causes limitation. Limitation in any form makes people rebel. Although in the process of both novels, any kind of savagery, brutality, filth, and social collapse can be observable and both writers believe that human being has the potential of being animal images, but they both also want to show that the very nature of human being is divine. Children’s weeping at the end Lord of the Flies and Doctor’s remark at the end of Blindness “I don’t think we did go blind, I think we are blind, blind but seeing, blind people who can see but do not see”, show exactly the matter of insight at the end of the novels. The fact that divinity exists in the very nature of human being is the indubitable aim that makes this research truly valuable.Keywords: brutality, lack of humanity, savagery, Blindness
Procedia PDF Downloads 375701 Structural, Electrochemical and Electrocatalysis Studies of a New 2D Metal-Organic Coordination Polymer of Ni (II) Constructed by Naphthalene-1,4-Dicarboxylic Acid; Oxidation and Determination of Fructose
Authors: Zohreh Derikvand
Abstract:
One new 2D metal-organic coordination polymer of Ni(II) namely [Ni2(ndc)2(DMSO)4(H2O)]n, where ndc = naphthalene-1,4-dicarboxylic acid and DMSO= dimethyl sulfoxide has been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. Compound 1 possesses a 2D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically independent Ni2+ ions are bridged by ndc2– ligands and water molecule. The ndc2– ligands adopt μ3 bridging modes, linking the metal centers into a two-dimensional coordination framework. The two independent NiII cations are surrounded by dimethyl sulfoxide and naphthalene-1,4-dicarboxylate molecules in distorted octahedron geometry. In the crystal structures of 1 there are non-classical hydrogen bonding arrangements and C-H–π stacking interactions. Electrochemical behavior of [Ni2(ndc)2(DMSO)4(H2O)]n, (Ni-NDA) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) was described. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of fructose on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) and the results showed that the Ni-NDA/CNTs film displays excellent electrochemical catalytic activities towards fructose oxidation.Keywords: naphthalene-1, 4-dicarboxylic acid, crystal structure, coordination polymer, electrocatalysis, impedance spectroscopy
Procedia PDF Downloads 332700 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 229699 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 67698 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 224697 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 331696 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 134695 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 427694 The Higher Education System in Jordan: Philosophy and Premises Preparation
Authors: Ihsan Orsan Oglah Elrabbaei
Abstract:
This research stems from the philosophy of education notion, as it is a fundamental pillar within or component of the philosophy of education. It is the general framework that society takes towards the future in order to build its integrated educational system amid the variables that surround it, in order to prepare its members in all aspects of cognitive, skill, and behavioral life, so that there is a clear concept of the system of productive values, according to the vision of philosophy that defines its future roles, which can be found in the system of productive values. With the resignation, everything changes. As a result, the philosophy of education is anticipated to evolve in response to perceived changes in society in terms of the nature of its human and material resources. The study will answer the following questions: Has the philosophy of education changed to accommodate this change? Alternatively, is the change that occurs because of natural growth without education having a role in directing this change and being aware of it in order to fit with national, regional, and global changes? Were the national educational goals and curricula and their programs viewed through the lenses of interest? On the other hand, do things happen without realizing that the philosophy of education has changed and that it proceeds according to the natural rolling of the invisible impulse? The study concluded that we must reconsider the philosophy of education and redefine who is an educated person. In addition, to recognize all the values of the roles that the individual can play in his society, according to his abilities, and with respect. Moreover, building a new philosophy of education based on what society can look at and what it wants from a flexible future takes the concept of changing life values, their contents, diversity, and the roles of each individual in them.Keywords: higher education system, jordan, philosophy, premises preparation.
Procedia PDF Downloads 97693 An Institutional Leadership Framework on University Academics’ Decision to Become Institutional Leaders: A Malaysian Perspective
Authors: Norazharuddin Shah Abdullah, Harshita Aini Haroon, Norazian Mohmad Azman, Erlane K. Ghani, Ismie Roha Mohamed Jais, Kamaruzzaman Muhammad, Azleen Ilias
Abstract:
This study examines the factors that influence academics' decisions to accept or decline leadership roles in Malaysian universities. A questionnaire survey was distributed to a total of 1771 academics from public and private institutions in Malaysia. This study shows that the majority of academics in universities, regardless of whether they are public or private, have a reluctance to take on administrative roles. In particular, this study shows that female academics in public universities have no ambition for administrative roles, while female academics in private universities show a strong enthusiasm for taking up administrative positions. In terms of age, academics of all age groups made comparable choices, but academics who are under 30 years old have a greater propensity to aspire to an administrative position. Associate professors at private universities also opt for an administrative position. The factors that influence academics' decisions to accept or decline an administrative position are categorised into five categories: career development, skills and experience, preferences, perceptions, and organization. The findings of this study suggest that the increasing number of academics not seeking institutional leadership positions is a concern, as universities need a sufficient pool of potential successors to effectively fulfil the purpose and vision of the university. This study suggests the implementation of awareness and training initiatives to inspire academics, especially young academics, to take up leadership roles within the institutions.Keywords: academics, institutional leadership, leadership, universities, Malaysia
Procedia PDF Downloads 60692 War and the Battle of Lebanese Television over Gender
Authors: Natalie M. Khazaal
Abstract:
The effects of the civil war on Lebanese women have been challenging to conceptualize. For some, war is a liberating and empowering force for women, while for others it is one that subjugates women and disempowers them in new ways. Scholars have explored the impact on the Lebanese civil war (1975-1990) on women in the fields of labor history, political activism and literary production. In all these arenas, women’s role and visibility were contested and negotiated in diverse ways. But probably the most visible arena where this contestation took place was television. Dramatized entertainment series were crucial sites where fictional women battled out the gender question, and which reflected and participated in the negotiations of gender politics. Even more stunningly, actual television stations became part of this battle through the plots and portrayals of women that they created. The state-backed Tele-Liban (TL) peddled patriarchal articulations of gender that directly competed with the edgy vision of liberated, independent women on the pirate Lebanese Broadcasting Corporation (LBC). This presentation explores how LBC used gender to distinguish its brand against the retrograde TL programing. Television series are an important medium for creating, testing and reenacting gender politics. They are even more consequential in another way. They are the sites where a dramatic shift in the relationship between Arab television and Arab publics—from benign neglect of public concerns towards engagement with audiences—took place for the first time. As this shift is at the heart of why Arab media was seen as a participant in the Arab uprisings, it is important to explore the roots of the shift in the dramas and comedy series of the mid-1980s Lebanese television. This presentation argues that television battles over gender were consequential and need serious consideration as sites of unexpected meaning.Keywords: gender, Lebanon, television, war, women
Procedia PDF Downloads 637691 Native Plants Marketing by Entrepreneurs in the Landscaping Industry in Japan
Authors: Yuki Hara
Abstract:
Entrepreneurs are welcomed to the landscaping industry, conserving practically and theoretically biological diversity in landscaping construction, although there are limited reports on corporative trials making a market with a new logistics system of native plants (NP) between landscaping companies and nurserymen. This paper explores the entrepreneurial process of a landscaping company, “5byMidori” for NP marketing. This paper employs a case study design. Data are collected in interviews with the manager and designer of 5byMidori, 2 scientists, 1 organization, and 18 nurserymen, fieldworks at two nurseries, observations of marketing activities in three years, and texts from published documents about the business concept and marketing strategy with NP. These data are analyzed by qualitative methods. The results show that NP is suitable for the vision of 5byMidori improving urban desertified environment with closer urban-rural linkage. Professional landscaping team changes a forestry organization into NP producers conserving a large nursery of a mountain. Multifaceted PR based on the entrepreneurial context and personal background of a landscaping venture can foster team members' businesses and help customers and users to understand the biodiversity value of the product. Wider partnerships with existing nurserymen at other sites in many regions need socio-economic incentives and environmental reliability. In conclusion, the entrepreneurial marketing of a landscaping company needs to add more meanings and a variety of merits in terms of ecosystem services, as NP tends to be in academic definition and independent from the cultures like nurseryman and forestry.Keywords: biological diversity, landscaping industry, marketing, native plants
Procedia PDF Downloads 120690 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 81689 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system
Procedia PDF Downloads 159688 Obsession of Time and the New Musical Ontologies. The Concert for Saxophone, Daniel Kientzy and Orchestra by Myriam Marbe
Authors: Dutica Luminita
Abstract:
For the music composer Myriam Marbe the musical time and memory represent 2 (complementary) phenomena with conclusive impact on the settlement of new musical ontologies. Summarizing the most important achievements of the contemporary techniques of composition, her vision on the microform presented in The Concert for Daniel Kientzy, saxophone and orchestra transcends the linear and unidirectional time in favour of a flexible, multi-vectorial speech with spiral developments, where the sound substance is auto(re)generated by analogy with the fundamental processes of the memory. The conceptual model is of an archetypal essence, the music composer being concerned with identifying the mechanisms of the creation process, especially of those specific to the collective creation (of oral tradition). Hence the spontaneity of expression, improvisation tint, free rhythm, micro-interval intonation, coloristic-timbral universe dominated by multiphonics and unique sound effects. Hence the atmosphere of ritual, however purged by the primary connotations and reprojected into a wonderful spectacular space. The Concert is a work of artistic maturity and enforces respect, among others, by the timbral diversity of the three species of saxophone required by the music composer (baritone, sopranino and alt), in Part III Daniel Kientzy shows the performance of playing two saxophones concomitantly. The score of the music composer Myriam Marbe contains a deeply spiritualized music, full or archetypal symbols, a music whose drama suggests a real cinematographic movement.Keywords: archetype, chronogenesis, concert, multiphonics
Procedia PDF Downloads 543687 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education
Authors: Jasmin Cowin
Abstract:
Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology
Procedia PDF Downloads 277686 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 156685 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array
Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling
Abstract:
DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array
Procedia PDF Downloads 367684 Women's Liberation: A Study of the Movement in Saudi Arabia
Authors: Rachel Hasan
Abstract:
Kingdom of Saudi Arabia has witnessed various significant social and political developments in 2018. Crown Prince of Kingdom of Saudi Arabia, Muhammad bin Salman, also serving as Deputy Prime Minister of Saudi Arabia, has made several social, cultural, and political changes in the country under his grand National Transformation Program. Program provides a vision of more economically viable, culturally liberal, and politically pleasant Saudi Arabia. One of the most significant and ground breaking changes that has been made under this program is awarding women the long awaited rights. Legislative changes are made to allow woman to drive. Seemingly basic on surface but driving rights to women represent much deeper meaning to the culture of Saudi Arabia and to the world outside. Ever since this right is awarded to the women, world media is interpreting this change in various colors. This paper aims to investigate the portrayal of gender rights in various online media publications and websites. The methodology applied has been quantitative content analysis method to analyze the various aspects of media's coverage of various social and cultural changes with reference to women's rights. For the purpose of research, convenience sampling was done for eight international online articles from media websites. The articles discussed the lifting of ban for females on driving cars in Saudi Arabia as well as gender development for these women. These articles were analyzed for media frames, and various categories of analysis were developed, which highlighted the stance that was observed. Certain terms were conceptualized and operationalized and were also explained for better understanding of the context.Keywords: gender rights, media coverage, political change, women's liberation
Procedia PDF Downloads 109683 Importance of Developing a Decision Support System for Diagnosis of Glaucoma
Authors: Murat Durucu
Abstract:
Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.Keywords: decision support system, glaucoma, image processing, pattern recognition
Procedia PDF Downloads 302682 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors
Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.
Abstract:
In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.Keywords: hand gestures, multiple cables, serial communication, sms notification
Procedia PDF Downloads 69681 Orthostatic Hypotension among Patients Aged above 65 Years Admitted to Medical Wards in a Tertiary Care Hospital, Sri Lanka
Authors: G. R. Constantine, M.C.K. Thilakasiri, V.S. Mohottala, T.V. Soundaram, D.S. Rathnayake, E.G.H.E. De Silva, A.L.S. Mohamed, V.R. Weerasekara
Abstract:
Orthostatic hypotension is prevalent in the elderly population, and it is an important risk factor contributing to falls in the elderly. This study aims to evaluate the prevalence of orthostatic hypotension in hospitalized elderly patients, changes in blood pressure during the hospital stay, morbidities associated with it and its association with falls in the elderly. A cross-sectional descriptive study was conducted in the National Hospital of Sri Lanka (NHSL) in a sample of 120 patients of age 65 years or above who were admitted to the medical wards. The demographic, clinical data was obtained by an interviewer-administered questionnaire. Two validated questionnaires were used to assess symptoms and effects of orthostatic hypotension and risk factors associated with falls. Orthostatic hypotension on admission and after 3 days of hospital stay was measured by bed-side mercury sphygmomanometer. Prevalence of orthostatic hypotension among the study population was 63.3%(76 patients). But no significant change in the orthostatic hypotension noted after 3 days of hospital admission (SND 0.61, SE= 5.59, p=0.27). There was no significant association found between orthostatic hypotension and its symptoms (dizziness and vertigo, vision problems, malaise, fatigue, poor concentration, neck stiffness), impact on standing or walking and non-communicable diseases. Falls were experienced by 27.5 % (33 patients) of the study population and prevalence of patients with orthostatic hypotension who had experienced falls was 25.9% (28 patients). In conclusions, orthostatic hypotension is more prevalent among elderly patients, but It wasn’t associated with symptoms, and non-communicable diseases, or as a risk factor for falls in elderly.Keywords: orthostatic hypotension, elderly falls, emergency geriatric, Sri Lanka
Procedia PDF Downloads 111680 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 303679 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 93678 Development of Creatively Integrated Teaching Skills Using Information and Communication Technology for Professional Teacher
Authors: Siwanit Autthawuttikul, Prakob Koraneekid, Sayamon Insa-ard
Abstract:
The purposes of this research were to development creatively integrated teaching skills using Information and Communication Technology (ICT) for professional teacher in schools under the education area of the basic education commission, ministry of education both schools under the office of primary education and those under The office of secondary education in eight western region provinces of Thailand. This is useful in defining a vision for the school strategy and restructuring schools in addition, teachers will have developed skills in teaching creative integrated ICT. The research methodology comprises quantitative and qualitative data collection. The Baseline Survey, focus group for discussions and then the model was developed creatively integrated teaching skills using ICT. The findings showed that 7 elements were important: (1) Academy Transformation (2) Information Technology Infrastructure (3) Personal Development (4) Supervision, Monitoring and Evaluation (5) Motivating and Rewarding (6) Important factor affecting the success of teaching integrated with ICT were knowledge, skills, attitudes and (7) The role of the individual concerned. The comparison creatively integrated teaching skills before and after participating in the overall shows that the average creatively integrated teaching skills using ICT after attending the event is 3.27, and standard deviation was 0.56, higher than before which is 2.60 and the standard deviation was 0.56. There are significant differences significant statistically level of .05. The final average score of the evaluation plan design creatively integrated teaching skills using ICT teachers' average score was 26.94 at the high levels.Keywords: integrated curriculum, information and communications technology, teachers in the western region, schools
Procedia PDF Downloads 445677 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process
Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah
Abstract:
Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation
Procedia PDF Downloads 341