Search results for: phenazine-1-carboxylic acid degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4897

Search results for: phenazine-1-carboxylic acid degradation

3157 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 229
3156 Supplementation of Jackfruit By-Product Concentrate in Combination with Two Types of Protein Sources for Growing Kids

Authors: Emely J. Escala, Lolito C. Bestil

Abstract:

An experiment was conducted to assess the potential of jackfruit by-product concentrate (JBC) in combination with two types of protein sources, soybean meal (SBM) and liquid acid whey (LAW), given at two different ratios as supplement for growing kids fed a basal diet of 70:30 napier grass (Pennisetum purpureum) and kakawate (Gliricidia sepium) soilage ratio. The experiment was set-up in randomized complete block design (RCBD) with sex-age combination as basis for blocking, with the following dietary treatments: T1 = 0.50:0.50% BW, DM basis, JBC:SBM, T2 = 0.75:0.25% BW JBC:SBM, T3 = 0.50:0.50% BW, DM basis, JBC:LAW, and T4 = 0.75:0.25% BW JBC:LAW. Analysis of JBC showed high contents of crude fiber with medium levels of crude protein and nitrogen-free extract, appearing to be fitting for ruminants and a potential energy source. Results showed significantly higher voluntary dry matter intake (VDMI), cumulative weight gain (CWG), and average daily gain (ADG) of growing goats supplemented with JBC in combination with SBM than with LAW. The amount of JBC can range from 0.50% to 0.75% BW with SBM making up the difference, but a JBC:SBM ratio of 0.75:0.25% BW, DM basis, is best in promoting highest voluntary dry matter intake and is, therefore, highly recommended in the light of savings in feed cost. A long-term study on the effects of JBC supplementation on meat qualities of growing kids (aroma, marbling characteristics and taste) is also recommended.

Keywords: jackfruit by-product concentrate, liquid acid whey, soybean meal, grower kids

Procedia PDF Downloads 198
3155 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.

Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 254
3154 Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts

Authors: Arife Simsek, Gulfem Bakan

Abstract:

Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem.

Keywords: AVS-SEM, Black Sea, heavy metal, sediment, toxicity

Procedia PDF Downloads 138
3153 Synergistic Effect of Platelet-Rich Plasma with Hyaluronic Acid Injection Following Arthrocentesis to Reduce Pain and Improve Function in Temporomandibular joint (TMJ) Osteoarthritis

Authors: Ayman Hegab

Abstract:

Increasing evidence supports the use of platelet-rich plasma (PRP) combined with hyaluronic acid (HA) for the treatment of knee osteoarthritis, which effectively promotes cartilage repair. This study aimed to determine whether injection of PRP+HA following arthrocentesis reduces pain and improves maximum incisal opening. This was a single-blind, prospective, randomized control study. The patients were selected based on the Hegab classification: Group I: patients treated with arthrocentesis followed by a single PRP injection; Group II (Control): patients treated with arthrocentesis followed by a single HA injection; and Group III: patients treated with arthrocentesis followed by a single PRP+HA combination injection. The primary predictor variable was the medication used for injection. The primary outcome variables were the maximum voluntary mouth opening and pain index scores. The secondary outcome variable was joint sounds. All outcome variables were assessed and compared among the three groups at baseline and at 1-, 3-, 6-, and 12-month intervals. Other variables, including patients’ age and sex, were evaluated in relation to the patient outcomes. Injecting PRP+HA showed statistically significant improvement in the primary and secondary treatment outcomes over PRP or HA injection throughout the study period (P<0.005). Injection of PRP+HA following arthrocentesis had significant long-term clinical efficacy regarding pain relief that was considered the main concern of both the patient and clinician.

Keywords: TMJ, HA, PRP, osteoarthritis

Procedia PDF Downloads 9
3152 Geochemistry Identification of Volcanic Rocks Product of Krakatau Volcano Eruption for Katastropis Mitigation Planning

Authors: Agil Gemilang Ramadhan, Novian Triandanu

Abstract:

Since 1929, the first appearance in sea level, Anak Krakatau volcano growth relatively quickly. During the 80 years up to 2010 has reached the height of 320 meter above sea level. The possibility of catastrophic explosive eruption could happen again if the chemical composition of rocks from the eruption changed from alkaline magma into acid magma. Until now Anak Krakatau volcanic activity is still quite active as evidenced by the frequency of eruptions that produced ash sized pyroclastic deposits - bomb. Purpose of this study was to identify changes in the percentage of rock geochemistry any results eruption of Anak Krakatau volcano to see consistency change the percentage content of silica in the magma that affect the type of volcanic eruptions. Results from this study will be produced in the form of a diagram the data changes the chemical composition of rocks of Anak Krakatau volcano. Changes in the composition of any silica eruption are illustrated in a graph. If the increase in the percentage of silica is happening consistently and it is assumed to increase in the time scale of a few percent, then to achieve silica content of 68 % (acid composition) that will produce an explosive eruption will know the approximate time. All aspects of the factors driving the increased threat of danger to the public should be taken into account. Catastrophic eruption katatropis mitigation can be planned early so that when these disasters happen later, casualties can be minimized.

Keywords: Krakatau volcano, rock geochemistry, catastrophic eruption, mitigation

Procedia PDF Downloads 281
3151 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell

Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan

Abstract:

Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.

Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation

Procedia PDF Downloads 281
3150 Rural Water Management Strategies and Irrigation Techniques for Sustainability. Nigeria Case Study; Kwara State

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Water is essential for sustaining life. As a limited resource, effective water management is vital. Water scarcity has become more common due to the effects of climate change, land degradation, deforestation, and population growth, especially in rural communities, which are more susceptible to water-related issues such as water shortage, water-borne disease, et c., due to the unsuccessful implementation of water policies and projects in Nigeria. Since rural communities generate the majority of agricultural products, they significantly impact on water management for sustainability. The development of methods to advance this goal for residential and agricultural usage in the present and the future is a challenge for rural residents. This study evaluated rural water supply systems and irrigation management techniques to conserve water in Kwara State, North-Central Nigeria. Suggesting some measures to conserve water resources for sustainability, off-season farming, and socioeconomic security that will remedy water degradation, unemployment which is one of the causes of insecurity in the country, by considering the use of fabricated or locally made irrigation equipment, which are affordable by rural farmers, among other recommendations. Questionnaires were distributed to respondents in the study area for quantitative evaluation of irrigation methods practices. For physicochemical investigation, samples were also gathered from their available water sources. According to the study's findings, 30 percent of farmers adopted intelligent irrigation management techniques to conserve water resources, saving 45% of the water previously used for irrigation. 70 % of farmers practice seasonal farming. Irrigation water is drawn from river channels, streams, and unlined and unprotected wells. 60% of these rural residents rely on private boreholes for their water needs, while 40% rely on government-supplied rural water. Therefore, the government must develop additional water projects, raise awareness, and offer irrigation techniques that are simple to adapt for water management, increasing socio-economic productivity, security, and water sustainability.

Keywords: water resource management, sustainability, irrigation, rural water management, irrigation management technique

Procedia PDF Downloads 111
3149 Potential of Native Microorganisms in Tagus Estuary

Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha

Abstract:

The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.

Keywords: biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, tagus estuary

Procedia PDF Downloads 123
3148 Coordinated Multi-Point Scheme Based on Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with less resources.

Keywords: adaptive beamforming, CoMP, LTE-A, ICI reduction

Procedia PDF Downloads 469
3147 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 245
3146 The Study and the Use of the Bifunctional Catalyst Pt/Re for Obtaining High Octane Number of the Gasoline

Authors: Menouar Hanafi

Abstract:

The original function of the process of platforming is to develop heavy naphtha (HSRN), coming from the atmospheric unit of distillation with a weak octane number (NO=44), to obtain a mixture of fuels â number octane raised by catalytically supporting specific groups of chemical reactions. The installation is divided into two sections: Section hydrobon. Section platforming. The rafinat coming from the bottom of column 12C2 to feed the section platforming, is divided into two parts whose flows are controlled and mixed with gas rich in hydrogen. Bottom of the column, we obtain stabilized reformat which is aspired by there pump to ensure the heating of the column whereas a part is sent towards storage after being cooled by the air cooler and the condenser. In catalytic catalyst of reforming, there is voluntarily associated a hydrogenating function-dehydrogenating, brought by platinum deposited, with an acid function brought by the alumina support (Al 2 0 3). The mechanism of action of this bifunctional catalyst depends on the severity of the operation, of the quality of the load and the type of catalyst. The catalyst used in the catalytic process of reforming is a very elaborate bifunctional catalyst whose performances are constantly improved thanks to the experimental research supported on an increasingly large comprehension of the phenomena. The American company Universel 0i1 petroleum (UOP) marketed several series of bimetallic catalysts such as R16, R20, R30, and R62 consisted Platinum/Rhenium on an acid support consisted the alumina added with a halogenous compound (chlorine).

Keywords: platforming, amelioration, octane number, catalyst

Procedia PDF Downloads 386
3145 Fatty Acid Metabolism in Hypertension

Authors: Yin Hua Zhang

Abstract:

Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts.

Keywords: hypertension, fatty acid, heart, calcium

Procedia PDF Downloads 109
3144 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination

Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen

Abstract:

Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.

Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition

Procedia PDF Downloads 51
3143 Antioxidant Potential of Sunflower Seed Cake Extract in Stabilization of Soybean Oil

Authors: Ivanor Zardo, Fernanda Walper Da Cunha, Júlia Sarkis, Ligia Damasceno Ferreira Marczak

Abstract:

Lipid oxidation is one of the most important deteriorating processes in oil industry, resulting in the losses of nutritional value of oils as well as changes in color, flavor and other physiological properties. Autoxidation of lipids occurs naturally between molecular oxygen and the unsaturation of fatty acids, forming fat-free radicals, peroxide free radicals and hydroperoxides. In order to avoid the lipid oxidation in vegetable oils, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydro-quinone (TBHQ) are commonly used. However, the use of synthetic antioxidants has been associated with several health side effects and toxicity. The use of natural antioxidants as stabilizers of vegetable oils is being suggested as a sustainable alternative to synthetic antioxidants. The alternative that has been studied is the use of natural extracts obtained mainly from fruits, vegetables and seeds, which have a well-known antioxidant activity related mainly to the presence of phenolic compounds. The sunflower seed cake is rich in phenolic compounds (1 4% of the total mass), being the chlorogenic acid the major constituent. The aim of this study was to evaluate the in vitro application of the phenolic extract obtained from the sunflower seed cake as a retarder of the lipid oxidation reaction in soybean oil and to compare the results with a synthetic antioxidant. For this, the soybean oil, provided from the industry without any addition of antioxidants, was subjected to an accelerated storage test for 17 days at 65 °C. Six samples with different treatments were submitted to the test: control sample, without any addition of antioxidants; 100 ppm of synthetic antioxidant BHT; mixture of 50 ppm of BHT and 50 ppm of phenolic compounds; and 100, 500 and 1200 ppm of phenolic compounds. The phenolic compounds concentration in the extract was expressed in gallic acid equivalents. To evaluate the oxidative changes of the samples, aliquots were collected after 0, 3, 6, 10 and 17 days and analyzed for the peroxide, diene and triene conjugate values. The soybean oil sample initially had a peroxide content of 2.01 ± 0.27 meq of oxygen/kg of oil. On the third day of the treatment, only the samples treated with 100, 500 and 1200 ppm of phenolic compounds showed a considerable oxidation retard compared to the control sample. On the sixth day of the treatment, the samples presented a considerable increase in the peroxide value (higher than 13.57 meq/kg), and the higher the concentration of phenolic compounds, the lower the peroxide value verified. From the tenth day on, the samples had a very high peroxide value (higher than 55.39 meq/kg), where only the sample containing 1200 ppm of phenolic compounds presented significant oxidation retard. The samples containing the phenolic extract were more efficient to avoid the formation of the primary oxidation products, indicating effectiveness to retard the reaction. Similar results were observed for dienes and trienes. Based on the results, phenolic compounds, especially chlorogenic acid (the major phenolic compound of sunflower seed cake), can be considered as a potential partial or even total substitute for synthetic antioxidants.

Keywords: chlorogenic acid, natural antioxidant, vegetables oil deterioration, waste valorization

Procedia PDF Downloads 264
3142 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: chemical reaction networks, ratio computation, stability, robustness

Procedia PDF Downloads 171
3141 Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms

Authors: Erhan Zor, Funda Copur, Asli I. Dogan, Haluk Bingol

Abstract:

Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms.

Keywords: carbon quantum dots, chirality, sensor, tartaric acid

Procedia PDF Downloads 240
3140 Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal.

Keywords: Adsorption-desorption behavior, lbl technique, poly(amidoamine), poly (acrylic acid), weak polyelectrolytes

Procedia PDF Downloads 53
3139 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 298
3138 The Molecule Preserve Environment: Effects of Inhibitor of the Angiotensin Converting Enzyme on Reproductive Potential and Composition Contents of the Mediterranean Flour Moth, Ephestia kuehniella Zeller

Authors: Yezli-Touiker Samira, Amrani-Kirane Leila, Soltani Mazouni Nadia

Abstract:

Due to secondary effects of conventional insecticides on the environment, the agrochemical research has resulted in the discovery of novel molecules. That research work will help in the development of a new group of pesticides that may be cheaper and less hazardous to the environment and non-target organisms which is the main desired outcome of the present work. Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on reproduction of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). The compound is diluted in acetone and applied topically to newly emerged pupae (10µg/ 2µl). The effects of this molecule was studied,on the biochemistry of ovary (on amounts nucleic acid, proteins, the qualitative analysis of the ovarian proteins and the reproductive potential (duration of the pre-oviposition, duration of the oviposition, number of eggs laid and hatching percentage). Captopril reduces significantly quantity of ovarian proteins and nucleic acid. The electrophoresis profile reveals the absence of tree bands at the treated series. This molecule reduced the duration of the oviposition period, the fecundity and the eggviability.

Keywords: environment, ephestia kuehniella, captopril, reproduction, the agrochemical research

Procedia PDF Downloads 285
3137 The Effect of Total Mixture Concentrate Based on Tofu Waste Silage as Feed on Performance of Lambs

Authors: Yafri Hazbi, Zaenal Bachruddin, Nafiatul Umami, Lies Mira Yusiati

Abstract:

The objective of this study was to identify the benefits of total mixture concentrate based on tofu waste silage (TMC-TWS) as ration containing lactic acid bacteria on performance of lambs. Fifteen weaning lambs (2-3 months old) were randomly divided into two treatment groups, treatment group I (TI) was fed with TMC-TWS as ration and treatment group II (TII) was fed with TMC-TWS fresh (without silage fermentation). The performance of lambs was evaluated on day 0, 15, and 30 to have data of body weight per day. Meanwhile, blood sampling and feces were made on the 30th day to get an analysis on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), and leukocytes (mill/ml)) and the number of worm eggs in feces. The results of this study showed no significant difference between the effect of different feed on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), as well as the number of worm eggs in the feces. However the results showed significant differences if it is low (P<0.05) due to the treatment group based on sex on body weight gain per day, feed conversion rate and the number of erythrocytes.

Keywords: lambs, total mixture concentrate, silage, acid lactid bacteria, blood profile, eggs worm in feces

Procedia PDF Downloads 178
3136 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan

Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam

Abstract:

Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.

Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties

Procedia PDF Downloads 141
3135 Effect of Phosphorus and Potassium Nutrition on Growth, Yield and Minerals Accumulation of Two Soybean Cultivars Differing in Phytate Contents

Authors: Taliman Nisar Ahmad, Hirofume Saneoka

Abstract:

A pot experiment was conducted to investigate the effect of phosphorus (P) and potassium (K) nutrition on grain yield, phytic acid and grain quality of high-phytate (Akimaro) and low-phytate line. Phosphorus and potassium were applied as; P₁ (20 kg ha⁻¹) and P₂ (100 kg ha⁻¹), same as K₁ (20 kg ha⁻¹) and K₂ (100 kg ha⁻¹), respectively. Low-phytate soybean had the highest grain yield, and 75% increase was observed compared to the high-phytate under same treatments. Highly significant differences of seed phytate P were observed in both cultivars, and the phytate P in high-phytate was found 39% higher than low-phytate, whereas no significant differences observed in response to P and K treatment. Percentage of phytate P from total P in seeds was 28 to 35% in low-phytate and 72 to 81% in high-phytate in different treatments. The lipid content in low-phytate was found lowered compared to that of high-phytate. Crude protein in grains was also found significantly higher in PK combined. No significant difference was observed in seed calcium (Ca), magnesium (Mg), and Zinc (Zn) in different treatments, but high-phytate showed 87% increase in seed Ca and 76% of Mg compared to low-phytate; however, low-phytate showed 82% increase in Zn content over high-phytate. The result illustrates that low-phytate soybean achieved higher grain yield and grain Pi in response to increased P and K nutrition. To achieve higher yield and quality seeds from the low-phytate soybean, it is recommended that proper phosphorus and potassium nutrition to be applied suggested in this study.

Keywords: phytic acid, low-phytate soybean, high-phytate soybean, P and K nutrition, protein content, soybean

Procedia PDF Downloads 134
3134 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 268
3133 The Collagen and Glycosaminoglycnas Isolated from Salmo Salar Skin

Authors: Beata Kaczmarek-Szczepańska, Lidia Zasada

Abstract:

Marine collagens such as fish skin, bone, cartilage, and scales, including both marine vertebrates and invertebrates sources, are more bioavailable compared to bovine or porcine collagen and have a higher absorption capability and more rapid bloodstream circulation due to their low molecular weight and small particle size. Fish skin may be used as a source of bioactive compounds. The advantage is that fish skin is a by-product of the food industry. The subject of the study is a lyophilizate consisting of a mixture of compounds from the group of glycosaminoglycans and collagen obtained as a result of processing fish skins. Bioactive compounds may find biomedical use in the production of dressing materials for wounds or in tissue engineering for the production of scaffolds for cells. Collagen and glycosaminoglycans were isolated from Salmo salar skin. The final mixture was obtained by the freeze-drying method. In the obtained lyophilizate, the content of amino acids was studied as well as the presence of polysaccharides. The studies showed the presence of glycine, proline, and hydroxyproline, which are the main amino acids of collagen. The HPLC analysis showed the presence of glucose which is a product of polysaccharides hydrolyzation and then reduction of glucuronic acid. It may be assumed that the lyophilizate contains both collagen and polysaccharide, which is probably hyaluronic acid. Acknowledgment: This work was carried out as a result of research project no. TANGO-V-A/0020/2021 financed by the National Centre for Research and Development.

Keywords: collagen, glycosaminoglycans, bioactive compounds, fish skin

Procedia PDF Downloads 115
3132 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins

Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy

Abstract:

The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.

Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants

Procedia PDF Downloads 240
3131 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 45
3130 Environmental Education and Water Resources Management in the City of Belem, Para, Brazil

Authors: Naiara de Almeida Rios

Abstract:

The environmental education, from Tbilisi, is signaled as an important instrument for conservation and environmental management. However, the social, economic, political and environmental aspects of each place require an environmental management that corresponds to the reality to which they are inserted, as well as environmental education practices. The city of Belém, the capital of the State of Pará, is one of the most important cities in the Amazon Region, and its vast water dimension requires that its watersheds take a careful look at their socio-environmental management. The Estrada Nova Hydrographic Basin is considered as one of the most critical river basins in the city due to flooding, lack of basic sanitation and degradation of water bodies. In this context, environmental education is understood as one of the necessary conditions to reduce environmental degradation. Environmental education presents itself as an instrument of social transformation and conservation of natural resources (especially water resources), where thinking about the sustainability of natural resources is moving towards dialogue on the importance of building an environmental awareness. The commitment that environmental education proposes covers all spheres of society, since the main objective of the same is the transformation of thought and attitudes from the understanding of reality. Therefore, to analyze how the government is managing the basin, as well as the environmental education practices developed in it, is fundamental, so that government can be charged with improvements for the population and for the natural environment. Therefore, the objective of this study is to analyze the influence of environmental education actions developed by local public authorities in the management of the Estrada Nova Hydrographic Basin, Belém/PA. For the accomplishment of this study, some methodological procedures will be used, like documentary analysis, bibliographical survey and fieldwork. If the multivariate statistical method is used to analyze the results obtained in the field. Unfortunately, public policies in the area of ​environmental education in Belém are still moving in short steps, since government interests have had very little dialogue with the socio-environmental problems that affect the Estrada Nova Hydrographic Basin. Both formal and informal environmental education has been poorly developed, hampering the continuous process proposed by water resources management.

Keywords: environmental education, environmental management, hydrographic basin, water resources

Procedia PDF Downloads 189
3129 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 116
3128 Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium’s metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB’s known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs.

Keywords: pharmacophore, molecular docking, lipoate protein ligase B (LipB), ADMET, TOPKAT

Procedia PDF Downloads 424