Search results for: logistic regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18912

Search results for: logistic regression model

17172 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses

Authors: Ayon Mukherjee

Abstract:

Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.

Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability

Procedia PDF Downloads 165
17171 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 16
17170 The Risk of Deaths from Viral Hepatitis among the Female Workers in the Beauty Service Industry

Authors: Byeongju Choi, Sanggil Lee, Kyung-Eun Lee

Abstract:

Introduction: In the republic of Korea, the number of workers in the beauty industry has been increasing. Because the prevalence of hepatitis B carriers in Korea is higher than in other countries, the risk of blood-borne infection including viral hepatitis B and C, among the workers by using the sharp and contaminated instruments during procedure can be expected among beauty salon workers. However, the health care policies for the workers to prevent the blood-borne infection are not established due to the lack of evidences. Moreover, the workers in hair and nail salon were mostly employed at small businesses, where national mandatory systems or policies for workers’ health management are not applied. In this study, the risk of the viral hepatitis B and C from the job experiencing the hair and nail procedures in the mortality was assessed. Method: We conducted a retrospective review of the job histories and causes of death in the female deaths from 2006-2016. 132,744 of female deaths who had one more job experiences during their lifetime were included in this study. Job histories were assessed using the employment insurance database in Korea Employment Information Service (KEIS) and the causes of death were in death statistics produced by Statistics Korea. Case group (n= 666) who died from viral hepatitis was classified the death having record involved in ‘B15-B19’ as a cause of deaths based on Korean Standard Classification of Diseases(KCD) with the deaths from other causes, control group (n=132,078). The group of the workers in the beauty service industry were defined as the employees who had ever worked in the industry coded as ‘9611’ based on Korea Standard Industry Classification (KSIC) and others were others. Other than job histories, birth year, marital status, education level were investigated from the death statistics. Multiple logistic regression analysis were used to assess the risk of deaths from viral hepatitis in the case and control group. Result: The number of the deaths having ever job experiences at the hair and nail salon was 255. After adjusting confounders of age, marital status and education, the odds ratio(OR) for deaths from viral hepatitis was quite high in the group having experiences with working in the beauty service industry with 3.14(95% confidence interval(CI) 1.00-9.87). Other associated factors with increasing the risk of deaths from viral hepatitis were low education level(OR=1.34, 95% CI 1.04-1.73), married women (OR=1.42, 95% CI 1.02-1.97). Conclusion: The risk of deaths from viral hepatitis were high in the workers in the beauty service industry but not statistically significant, which might attributed from the small number of workers in beauty service industry. It was likely that the number of workers in beauty service industry could be underestimated due to their temporary job position. Further studies evaluating the status and the incidence of viral infection among the workers with consideration of the vertical transmission would be required.

Keywords: beauty service, viral hepatitis, blood-borne infection, viral infection

Procedia PDF Downloads 139
17169 Dietary Vitamin D Intake and the Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies

Authors: Iris W. A. Boot, Anke Wesselius, Maurice P. Zeegers

Abstract:

Diet may play an essential role in the aetiology of bladder cancer (BC). Vitamin D is involved in various biological functions which have the potential to prevent BC development. Besides, vitamin D also influences the uptake of calcium and phosphorus , thereby possibly indirectly influencing the risk of BC. The aim of the present study was to investigate the relation between vitamin D intake and BC risk. Individual dietary data were pooled from three cohort studies. Food item intake was converted to daily intakes of vitamin D, calcium and phosphorus. Pooled multivariate hazard ratios (HRs), with corresponding 95% confidence intervals (CIs) were obtained using Cox-regression models. Analyses were adjusted for gender, age and smoking status (Model 1), and additionally for the food groups fruit, vegetables and meat (Model 2). Dose–response relationships (Model 1) were examined using a nonparametric test for trend. In total, 2,871 cases and 522,364 non-cases were included in the analyses. The present study showed an overall increased BC risk for high dietary vitamin D intake (HR: 1.14, 95% CI: 1.03-1.26). A similar increase BC risk with high vitamin D intake was observed among women and for the non-muscle invasive BC subtype, (HR: 1.41, 95% CI: 1.15-1.72, HR: 1.13, 95% CI: 1.01-1.27, respectively). High calcium intake decreased the BC risk among women (HR: 0.81, 95% CI: 0.67-0.97). A combined inverse effect on BC risk was observed for low vitamin D intake and high calcium intake (HR: 0.67, 95% CI: 0.48-0.93), while a positive effect was observed for high vitamin D intake in combination with low, moderate and high phosphorus (HR: 1.31, 95% CI: 1.09-1.59, HR: 1.17, 95% CI: 1.01-1.36, HR: 1.16, 95% CI: 1.03-1.31, respectively). Combining all nutrients showed a decreased BC risk for low vitamin D intake, high calcium and moderate phosphor intake (HR: 0.37, 95% CI: 0.18-0.75), and an increased BC risk for moderate intake of all the nutrients (HR: 1.18, 95% CI: 1.02-1.38), for high vitamin D and low calcium and phosphor intake (HR: 1.28, 95% CI: 1.01-1.62), and for moderate vitamin D and calcium and high phosphorus intake (HR: 1.27, 95% CI: 1.01-1.59). No significant dose-response analyses were observed. The findings of this study show an increased BC risk for high dietary vitamin D intake and a decreased risk for high calcium intake. Besides, the study highlights the importance of examining the effect of a nutrient in combination with complementary nutrients for risk assessment. Future research should focus on nutrients in a wider context and in nutritional patterns.

Keywords: bladder cancer, nutritional oncology, pooled cohort analysis, vitamin D

Procedia PDF Downloads 84
17168 Media Richness Perspective on Web 2.0 Usage for Knowledge Creation: The Case of the Cocoa Industry in Ghana

Authors: Albert Gyamfi

Abstract:

Cocoa plays critical role in the socio-economic development of Ghana. Meanwhile, smallholder farmers most of whom are illiterate dominate the industry. According to the cocoa-based agricultural knowledge and information system (AKIS) model knowledge is created and transferred to the industry between three key actors: cocoa researchers, extension experts, and cocoa farmers. Dwelling on the SECI model, the media richness theory (MRT), and the AKIS model, a conceptual model of web 2.0-based AKIS model (AKIS 2.0) is developed and used to assess the possible effects of social media usage for knowledge creation in the Ghanaian cocoa industry. A mixed method approach with a survey questionnaire was employed, and a second-order multi-group structural equation model (SEM) was used to analyze the data. The study concludes that the use of web 2.0 applications for knowledge creation would lead to sustainable interactions among the key knowledge actors for effective knowledge creation in the cocoa industry in Ghana.

Keywords: agriculture, cocoa, knowledge, media, web 2.0

Procedia PDF Downloads 333
17167 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.

Keywords: speed model, artificial neural network, arterial, mixed traffic

Procedia PDF Downloads 388
17166 Effects of Different Load on Physiological, Hematological, Biochemical, Cytokines Indices of Zanskar Ponies at High Altitude

Authors: Prince Vivek, Vijay Kumar Bharti, Deepak Kumar, Rohit Kumar, Kapil Nehra, Dhananjay Singh, Om Prakash Chaurasia, Bhuvnesh Kumar

Abstract:

High altitude native people still rely heavily on animal transport for logistic support at eastern and northern Himalayas regions. The prevalent mountainous terrains and rugged region are not suitable for the motorized vehicle to use in logistic transport. Therefore, people required high endurance pack animals for load carrying and riding. So far to the best of our knowledge, no studies have been taken to evaluate the effect of loads on the physiology of ponies in high altitude region. So, in this view, we evaluated variation in physiological, hematological, biochemical, and cytokines indices of Zanskar ponies during load carrying at high altitude. Total twelve (12) of Zanskar ponies, mare, age 4-6 years selected for this study, Feed was offered at 2% of body weight, and water ad libitum. Ponies were divided into three groups; group-A (without load), group-B (60 kg), and group-C (80 kg) of backpack loads. The track was very narrow and slippery with gravel, uneven with a rocky surface and has a steep gradient of 4 km uphill at altitude 3291 to 3500m. When we evaluate these parameters, it is understood that the heart rate, pulse rate, and respiration rate was significantly increased in 80 kg group among the three groups. The hematology parameters viz. hemoglobin significantly increased in 80 kg group on 1st day after load carrying among the three groups which was followed by control and 60 kg whereas, PCV, lymphocytes, monocytes percentage significantly increased however, ESR and eosinophil % significantly decreased in 80 kg group after load carrying on 7th day after load carrying among the three groups which were followed by control and 60 kg group. In biochemical parameters viz. LA, LDH, TP, hexokinase (HK), cortisol (CORT), T3, GPx, FRAP and IL-6 significantly increased in 80 kg group on the 7th day after load carrying among the three groups which were followed by control and 60 kg group. The ALT, ALB, GLB, UR, and UA significantly increased in 80 kg group on the 7th day before and after load carrying among the three groups which were followed by control and 60 kg group. The CRT, AST, and CK-MB were significantly increased in 80 kg group on the 1st and 7th day after load carrying among the three groups which were followed by control and 60 kg group. It has been concluded that, heart rate, respiration rate, hematological indices like PCV, lymphocytes, monocytes, Hb and ESR, biochemical indices like lactic acid, LDH, TP, HK, CORT, T3, ALT, AST and CRT, ALB, GLB, UR, UA, GPx, FRAP and IL-6 are important biomarkers to assess effect of load on animal physiology and endurance. Further, this result has revealed the strong correlation of change in biomarkers level with performance in ponies during load carry. Hence, these parameters might be used for the performance of endurance of Zanskar ponies in the high mountain region.

Keywords: biochemical, endurance, high altitude, load, ponies

Procedia PDF Downloads 283
17165 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor

Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan

Abstract:

This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.

Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production

Procedia PDF Downloads 187
17164 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 64
17163 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 149
17162 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry

Authors: Gamze Sekeroglu, Mikail Altan

Abstract:

Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.

Keywords: profitability, regression analysis, inventory management, working capital

Procedia PDF Downloads 336
17161 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 71
17160 Modeling Heat-Related Mortality Based on Greenhouse Emissions in OECD Countries

Authors: Anderson Ngowa Chembe, John Olukuru

Abstract:

Greenhouse emissions by human activities are known to irreversibly increase global temperatures through the greenhouse effect. This study seeks to propose a mortality model with sensitivity to heat-change effects as one of the underlying parameters in the model. As such, the study sought to establish the relationship between greenhouse emissions and mortality indices in five OECD countries (USA, UK, Japan, Canada & Germany). Upon the establishment of the relationship using correlation analysis, an additional parameter that accounts for the sensitivity of heat-changes to mortality rates was incorporated in the Lee-Carter model. Based on the proposed model, new parameter estimates were calculated using iterative algorithms for optimization. Finally, the goodness of fit for the original Lee-Carter model and the proposed model were compared using deviance comparison. The proposed model provides a better fit to mortality rates especially in USA, UK and Germany where the mortality indices have a strong positive correlation with the level of greenhouse emissions. The results of this study are of particular importance to actuaries, demographers and climate-risk experts who seek to use better mortality-modeling techniques in the wake of heat effects caused by increased greenhouse emissions.

Keywords: climate risk, greenhouse emissions, Lee-Carter model, OECD

Procedia PDF Downloads 344
17159 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure

Authors: Heba Abdelmotaal

Abstract:

This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.

Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression

Procedia PDF Downloads 360
17158 Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa

Abstract:

This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Keywords: systemC, modelling, simulation, CSMA

Procedia PDF Downloads 428
17157 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 147
17156 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca

Abstract:

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation

Procedia PDF Downloads 230
17155 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
17154 Unified Structured Process for Health Analytics

Authors: Supunmali Ahangama, Danny Chiang Choon Poo

Abstract:

Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.

Keywords: agile methodology, health analytics, unified process model, UML

Procedia PDF Downloads 506
17153 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab

Procedia PDF Downloads 326
17152 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 30
17151 Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors

Authors: Robert Setekera, Ramses van der Toorn

Abstract:

We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics.

Keywords: avalanche multiplication, avalanche current, bipolar transistors, compact modeling, electric field, impact ionization, local avalanche

Procedia PDF Downloads 622
17150 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 131
17149 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.

Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate

Procedia PDF Downloads 369
17148 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 219
17147 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles

Authors: Mohsen Solimani Babarsad, Payam Taheri

Abstract:

Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.

Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’

Procedia PDF Downloads 363
17146 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
17145 Factors of Adoption of the International Financial Reporting Standard for Small and Medium Sized Entities

Authors: Uyanga Jadamba

Abstract:

Globalisation of the world economy has necessitated the development and implementation of a comparable and understandable reporting language suitable for use by all reporting entities. The International Accounting Standard Board (IASB) provides an international reporting language that lets all users understand the financial information of their business and potentially allows them to have access to finance at an international level. The study is based on logistic regression analysis to investigate the factors for the adoption of theInternational Financial Reporting Standard for Small and Medium sized Entities (IFRS for SMEs). The study started with a list of 217 countries from World Bank data. Due to the lack of availability of data, the final sample consisted of 136 countries, including 60 countries that have adopted the IFRS for SMEs and 76 countries that have not adopted it yet. As a result, the study included a period from 2010 to 2020 and obtained 1360 observations. The findings confirm that the adoption of the IFRS for SMEs is significantly related to the existence of national reporting standards, law enforcement quality, common law (legal system), and extent of disclosure. It means that the likelihood of adoption of the IFRS for SMEs decreases if the country already has a national reporting standard for SMEs, which suggests that implementation and transitional costs are relatively high in order to change the reporting standards. The result further suggests that the new standard adoption is easier in countries with constructive law enforcement and effective application of laws. The finding also shows that the adoption increases if countries have a common law system which suggests that efficient reportingregulations are more widespread in these countries. Countries with a high extent of disclosing their financial information are more likely to adopt the standard than others. The findings lastly show that the audit qualityand primary education levelhave no significant impact on the adoption.One possible explanation for this could be that accounting professionalsfrom in developing countries lacked complete knowledge of the international reporting standards even though there was a requirement to comply with them. The study contributes to the literature by providing factors that impact the adoption of the IFRS for SMEs. It helps policymakers to better understand and apply the standard to improve the transparency of financial statements. The benefit of adopting the IFRS for SMEs is significant due to the relaxed and tailored reporting requirements for SMEs, reduced burden on professionals to comply with the standard, and provided transparent financial information to gain access to finance.The results of the study are useful toemerging economies where SMEs are dominant in the economy in informing its evaluation of the adoption of the IFRS for SMEs.

Keywords: IFRS for SMEs, international financial reporting standard, adoption, institutional factors

Procedia PDF Downloads 81
17144 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 75
17143 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 150